STRAP staining

Figure S1. Specificity of STRAP antibody tested on a STRAP knock-out Huh6 clone and control thereof. For this purpose, both cell lines were formalin-fixed and embedded in paraffin.

Huh6 Huh7 Con#11 Con#23 Con#26 KO#4 KO#33 KO#36 Con#1 Con#6 Con#12 KO#4 KO#11 KO#15

Exons	Clones	AA alteration	Size	Sequences
1	Wild type	-	-	CACGCGACCCGTGGTTGATTTGGCCTTCAGTGGCATCACGCCTTATGGGTATTTCT TAATCAGCTGGCCACACGCGACCCGTGGTTGAATT
1	Huh6 KO#33	Insertion	+81	CACGCGACCCGTGGTTGACCCCGTCTCCCTGGCTTTAGCCACCTCTCCATCCTCTT GCTTTCTTTGCCTGGACACCCCGTTCTCCTGTGGATTCGGGTATT
2	Wild type	-	-	TGCAACACTGAATAAGGATGCCACCAAAGCAGCTACAG
		Deletion	-1	TGCAACACTGA: TAAGGATGCCACCAAAGCAGCTACAG
2	Huh6 KO#4	Insertion	+1	${\tt TGCAACACTGAA} {\tt A} {\tt TAAGGATGCCACCAAAGCAGCTACAG}$
		Deletion	-22	TGCAACAC::::::::::::::::::::::::::::::::
	Huh6 KO#36	Insertion	+2	TGCAACACTGAA AA TAAGGATGCCACCAAAGCAGCTACAG
2		Insertion	+1	TGCAACACTGAA A TAAGGATGCCACCAAAGCAGCTACAG
2	Huh7 KO#4	Insertion	+1	TGCAACACTGAA A TAAGGATGCCACCAAAGCAGCTACAG
		Insertion	+1	TGCAACACTGAA A TAAGGATGCCACCAAAGCAGCTACAG
2	Huh7 KO#11	Deletion	-1	TGCAACACTGA: TAAGGATGCCACCAAAGCAGCTACAG
		Insertion	+~300	from Ecoli and other unknown sources
	Huh7 KO#15	Insertion	+1	TGCAACACTGAA A TAAGGATGCCACCAAAGCAGCTACAG
2		Deletion	-1	TGCAACACTGA: TAAGGATGCCACCAAAGCAGCTACAG

Figure S2. Knockout of the STRAP gene by CRISPR/Cas9 technology in HCC cell lines. Huh6 and Huh7 were transfected with STRAP-targeting vectors and single-cell sorted by FACS. The surviving clones were subjected to western blot. Depicted are STRAP protein levels of independent control and knock-out clones selected for further analysis. The lower panel shows the sequence alterations of each STRAP knock-out clone. All control clones showed only the wild-type sequence. The insertion of 81 nucleotides in Huh6 KO#33 results in additional 27 amino acids within the WD40 region, which apparently makes the protein highly unstable as demonstrated by no detectable protein using two antibodies.

Figure S3. Elevated expression of STRAP in DEN-induced mouse liver tumors (T) compared with flanking normal liver tissue (N).

Figure S4. Analysis of the TCGA liver cancer cohort reveals that no significant difference in average *STRAP* RNA levels is observed between normal and tumor samples. Kaplan-Meier survival analysis and a log-rank test of the top and bottom 30% *STRAP* expressors revealed a significant trend (p=0.011) of reduced survival in the high expressing group.

Figure S5. Baseline levels of STRAP protein and RNA in a panel of 9 HCC cell lines.

Figure S6. Log2 fold change of liver stemness markers (A), liver differentiation related genes (B) and TGF- β signaling target genes (C) in STRAP knock-out clones compared to controls. The results are presented as log2 fold change ± Standard Error, n=3.

Supplemental Table S1. Gene mutations of Wnt/β-catenin signaling components in HCC cell lines

Cell line	Gene	AA alteration	Zygosity
HepG2	CTNNB1	p.W25_I140 del	Heterozygous
Huh6	CTNNB1	p.G34V	Heterozygous
SNU398	CTNNB1	p.S37C	Heterozygous
Hep3B	AXIN1	p.R146*	Homozygous
PLC/PRF/5	AXIN1	p.(R373_M418 del)	Homozygous
SNU449	AXIN1	p.R712*	Homozygous
Huh7			
HepaRG			
SNU182			

Supplemental Table S2. Clinicopathologic characteristics of HCC TMA

Characteristic	N=109
Age (median, range)	60.3 (23-87)
Male/Female (n, %)	80/29 (73/27)
Hepatitis-Ba/Hepatitis-Cb (n, %)	20/17 (18/16)
Cirrhosis (n, %)	59 (46)
Tumor differentiation (n, %) (well, moderate, poor)	33/57/18 (31/53/17)
Vascular invasion (n, %)	57 (61)
Single vs multiple lesions (n, %)	73/36 (67/33)
Median size (median, range)	4.5 cm (0.5-25.0)
Median AFP (median, range)	8.5 ug/l (1-63.000)
Recurrence (n, %)	41 (38)
HCC related death (n, %)	27 (25)

Supplemental Table S3. Selected STRAP sgRNAs

Species	Gene target	gRNA	Sequence
Human	STRAP exon2	sgRNA1	TTGGGGTGCAACACTGAATA
	STRAP exon1	sgRNA2	AATCAACCACGGGTCGCGTG
	STRAP exon1	sgRNA3	CACGCGACCCGTGGTTGATT

Supplemental Table S4. Primer sequences of STRAP used for Sanger sequencing

Exons	Forward Sequence (5 ~3)	Reverse Sequence (5'~3')
Exon1	CCCTTCTTTTCCTGTTGCC	GTGTTGGCTCTCATCTCAG
Exon2	GGTGGTAGTTAAATAGCTG	TGGGATCAAACATGCGTTC

Supplemental Table S5. Primer sequence used for Ion Torrent sequencing

Gene	Forward Sequence (5 ~ 3)	Reverse Sequence (5'~3')
STRAP	Adapter A-Barcode-CCCTTCTTTTCCTGTTGCC	Adapter PI-Barcode-GTGTTGGCTCTCATCTCAG

Supplemental Table S6. Primer sequences used for qRT-PCR

Gene	Forward Sequence (5 ~3')	Reverse Sequence (5'~3')
DCDC2	ACTTGGACATAGGAGAAATCAAGA	CGAGCTGACACGTTGATCCT
NTHL1	TATGAGGGCTCGGACAGTGA	TTTGGTTTGGCTGGAGAGCA
RPS26	AAACATAGTGGAGGCCGCAG	CACATACAGCTTGGGAAGCAC
OLR1	CCTTGCTCGGAAGCTGAATG	TCTCCATGCCAGATCCAGTC
ABHD13	CCGGCGACACCCGAG	ACAAAGTTCCACAGCATCCAG
KLHL42	GGCCTCCATGAACCAGAAGA	GTTCCGGTCTCTGGTAGTGTAT
ZNF853	AGCAGGAAATGCTCCACCAG	GTGGACTGCTGTTCCTCTCC
LGR5	ACACGTACCCACAGAAGCTC	CTAAAAGCCTGGACGGGGAT

Supplemental Table S7. Gene information

Gene		Protein
		A scaffolding protein without enzymatic function exerting regulatory
STRAP	STRAP	functions on a variety of cellular processes
CTNNB1	β-catenin	A dual function protein involved in regulation and coordination of cell-cell
CTIVIVET	p-cateriiri	adhesion and gene transcription
AXIN1	AXIN1	To form a destruction complex with APC, GSK3 and CK1a leading to the
, , , , , , , , , , , , , , , , , , , ,	7 5 11. 1	degradation of β-catenin
AXIN2	AXIN2	To form a destruction complex with APC, GSK3 and CK1a leading to the
		degradation of β-catenin
APC	APC	A tumor suppressor, negatively regulating β-catenin by forming a
		destruction complex with AXIN1/2, GSK3 and CK1a
GSK3	GSK3	A Ser/Thr kinase
CSNK1A1	CK1a	Kinase with preferential acidic protein targets
LGR5	LGR5	The receptor of R-spondin family of stem cell factors to potentiate Wnt/β-
20,10	20.10	catenin signaling
ASK1	MAP3K5	Mitogen-activated protein kinase
PI3K	PIK3CA	Phosphatidylinositol 3-kinase
PDK1	PDK1	Pyruvate dehydrogenase kinase
DCDC2	DCDC2	A protein with two doublecortin peptide domains binding to tubulin and
20202	20202	enhancing microtubule polymerization
NTHL1	NTHL1	A bifunctional DNA glycosylase that has an associated beta-elimination
	1444.2	activity
RPS26	40S ribosomal	A ribosomal protein as a component of the 40S subunit
020	protein S26	·
OLR1	OLR1	The protein binds, internalizes and degrades oxidized low-density
		lipoprotein
ABHD13	ABHD13	Unknown
KLHL42	KLHL42	Unknown
7NE952	Zinc finger	A protein contains the zinc finger, a structural motif, for the coordination
ZNF853	protein 853	of one or more zinc ions in order to stabilize the fold.
MYC	MYC	A multifunctional, nuclear phosphoprotein that plays a role in cell cycle
IVITO	IVITO	progression, apoptosis and cellular transformation
CCND1	Cyclin D1	A member of highly conserved cyclin family, whose members are
l	1	<u>l</u>

		characterized by a dramatic periodicity in protein abundance throughout the cell cycle	
GLUL	glutamate- ammonia ligase	It catalyzes the synthesis of glutamine from glutamate and ammonia in an ATP-dependent reaction	
RGN	Regucalcin	It may have an important role in calcium homeostasis	
BIRC5	BIRC5/ Survivin	This protein functions to inhibit caspase activation, thereby leading to negative regulation of apoptosis or programmed cell death	
SOX9	SOX-9	A transcription factor	
CD44	CD44	CD44 participates in a wide variety of cellular functions including lymphocyte activation, recirculation and homing, hematopoiesis, and tumor metastasis.	
PROM1	Prominin- 1/CD133	The precise function of CD133 remains unknown, it has been proposed to act as an organizer of cell membrane topology	
ALB	Albumin	Its main function is to regulate the Oncotic pressure of blood	
AFP	alpha fetoprotein	Alpha-fetoprotein expression in adults is often associated with hepatoma or teratoma	
HNF4A	HNF4A/ NR2A1	HNF4A is a nuclear transcription factor	
HNF1A	HNF1A	A transcription factor expressed in organs of endoderm origin	
HNF1B	HNF1B	HNF1B is a nuclear transcription factor	
FOXA1	FOXA1/ HNF- 3A	A transcriptional activator for liver-specific transcripts such as albumin and transthyretin	
FOXA2	FOXA2/ HNF- 3B/ TCF-3B	A transcriptional activator for liver-specific transcripts such as albumin and transthyretin	
FOXA3	FOXA3/ HNF- 3G/ TCF-3G	A transcriptional activator for liver-specific transcripts such as albumin and transthyretin	
PPARA	PPARa/NR1C1	A transcription factor and a major regulator of lipid metabolism in the liver	
GATA6	GATA6	This protein preferentially binds (A/T/C)GAT(A/T)(A) of the consensus binding sequence.	
GATA4	GATA4	A member of the GATA family of zinc finger transcription factors	
HHEX	HHEX	A member of the homeobox family of transcription factors, many of which are involved in the development of liver, thyroid, forebrain etc.	
TBX3	TBX3	A member of T-box family which are the transcription factors involved in the regulation of developmental processes	
APOB	Apolipoprotein B	Apolipoprotein B is the primary apolipoprotein of chylomicrons, VLDL, IDL, and LDL particles	
APOA1	Apolipoprotein A1	Apolipoprotein A1 is the major protein component of high density lipoprotein particles in plasma.	

APOA2	Apolipoprotein	The second most abundant protein of the high density lipoprotein
	A2	particles
APOA4	Apolipoprotein	Apolipoprotein A4 is secreted into circulation on the surface of newly
7 67.7	A4	synthesized chylomicron particles
APOC2	Apolipoprotein	A component of very low density lipoproteins and chylomicrons
7.1. 002	C2	Acomponent of very low definity inpoproteins and onytomicrons
APOC3	Apolipoprotein	A component of very low density lipoprotein
A 000	C3	A component of very low definity importation
TF	Transferrin	Transferrins are iron-binding blood plasma glycoproteins that control the
.,	Transform	level of free iron (Fe) in biological fluids
MTTP	MTTP	This protein plays a central role in lipoprotein assembly
SHBG	SHBG/SSBG	A glycoprotein that binds to the two sex hormones: androgen and estrogen
CYP2C9	CYP2C9	An important cytochrome P450 enzyme with a major role in the oxidation
011 203	011 209	of both xenobiotic and endogenous compounds
		A member of the cytochrome P450 mixed-function oxidase system, is
CYP2D6	CYP2D6	one of the most important enzymes involved in the metabolism of
		xenobiotics in the body
EPO	Erythropoietin/	A hormone that induces red blood cell production
	hematopoietin	
AGT	Angiotensinogen	Angiotensin is a peptide hormone that causes vasoconstriction and a
44400	44400	subsequent increase in blood pressure
AMBP	AMBP	AMBP interacts with CD79A
CDKN1A	p21 ^{Cip1}	A cyclin-dependent kinase inhibitor (CKI) that is capable of inhibiting all
ODKNOD	ODKNOD	cyclin/CDK complexes
CDKN2B	CDKN2B	A cyclin-dependent kinase inhibitor
CDKN1C	CDKN1C	A tight-binding inhibitor of several G1 cyclin/Cdk complexes and a
		negative regulator of cell proliferation
EIF4EBP1	4E-BP1	Interaction of this protein with eIF4E inhibits complex assembly and represses translation
		Interaction of this protein with cellular and viral survival-promoting
BIK	Bcl-2-	proteins, such as BCL2 and the Epstein-Barr virus enhances
	interacting killer	programmed cell death
DOI 01 11	5010111	Interaction of this protein with other members of the BCL-2 protein family,
BCL2L11	BCL2L11	including BCL2, BCL2L1/BCL-X(L), and MCL1, activates apoptosis
DAPK1	DAPK1	A positive mediator of gamma-interferon induced programmed cell death
548	Fas cell surface	The Fas receptor is a death receptor on the surface of cells that leads to
FAS	death receptor	programmed cell death (apoptosis)
	1	

GADD45B	GADD45B	GADD45B responds to environmental stresses by mediating activation of the p38/JNK pathway and is involved in the regulation of growth and
		apoptosis