Supplementary Material for Anande et al: RNA splicing alterations in AML
RNA splicing alterations induce a cellular stress response associated with poor prognosis in AML


Supplementary Methods

Patient cohorts

Non-M3 AML patients from the TCGA and Clinseq cohorts were included if they received intensive induction chemotherapy, were devoid of splicing factor mutations, and had comprehensive clinical information (TCGA; n=104, Clinseq; n=184).  For the TCGA-AML discovery cohort, RNA-seq data and associated mutational and clinical data were retrieved (in 2017) from the NCI data portal (https://portal.gdc.cancer.gov) and the study publication (1).  The Clinseq-AML cohort was treated in Sweden between 1997 and 2014 with intensive induction chemotherapy. The bone marrow or peripheral blood samples for these patients were obtained at the time of diagnosis and sequenced for their transcriptome and a panel of frequently mutated genes (2). Details about sample preparation, sequencing coverage and data access have previously been published (2). Clinical data were retrieved from the Swedish Acute Leukemia Registry (SALR) (3) or from patient records. Transcriptomic data from the BEAT-AML cohort was used to validate significance of the splicing signature. From the total set of patients for whom gene expression data was available (n=451), we utilized identical selection criteria as were applied on the TCGA and Clinseq cohorts. Patients with a diagnosis at inclusion of AML, excluding M3 AML patients and those with splicing factor mutations, and who received intensive induction chemotherapy were identified (n=175). We identified patients for whom clinical information (including survival data) and gene expression data with informative reads across the signature events were available for the final analyses (n=85). Data from the AMLCG group (4) was also considered for validation purposes but excluded due to the lack of informative reads across all signature events.

RNA-seq data analyses

Data pre-processing

Quality control checks were performed on raw RNA-seq data using FastQC (v 0.11.5). Adapter contamination and low-quality sequences in Clinseq-AML samples were removed by FastxToolkit. TCGA raw data was found to be clean, hence no filtering was required.  Quality filtered data were then processed for uniform read length, as splicing algorithms/tools need all reads to be of uniform length across all samples. We trimmed/removed reads using an in-house Perl script. The pre-processed samples were individually aligned to Human genome (UCSC HG19) with default settings using the transcriptome aligner STAR (v 2.5.1b, --outSAMtype BAM SortedByCoordinate).   The parameter ‘Insert size’ is a mandatory requirement for splicing tools as it helps in the accurate assignment of reads to isoforms.  Insert size estimation was done using CollectInsertSizeMetrics module built in Picard-tools (v 2.5.0).

Alternative Splicing Analyses 

We analyzed five types of splicing events i.e. Exon skipping (SE), Intron retention (RI), Mutually exclusive exons (MXE), Alternative 3’ splice site (A3’SS) and Alternative 5’ splice site (A5’SS). The tool Mixture of Isoforms (MISO) was used to quantify the five splicing events using PSI (Percent Spliced In) values in each sample (5). The annotations for Human genome (hg19) splicing events v2.0 (https://miso.readthedocs.io/en/fastmiso/annotation.html) were used with MISO.  Differentially spliced events were identified in ELN Adverse patients compared to ELN Favorable using the rMATS tool (v 4.0.1) (6). Splice junction annotations for splicing events were used from ensemble GTF file (GRCh37.72). rMATS was run in paired-end mode with 50 bases read length for TCGA and 126 bases for Clinseq. All the samples in Favorable and Adverse were considered as replicates in respective groups. The differentially spliced events identified using rMATS were filtered with FDR < 0.05 in each cohort. The Sashimi plot module of integrated genome viewer (v 2.4.13) was used to generate and visualize splicing events.

Differential gene expression analyses
The featureCount module of the subread package (v 1.5.2) was used to generate read counts for genes (7). FeatureCount was run in default mode with exon mode (-p -t exon -g gene_id) using UCSC GTF file. Differentially expressed genes were identified between ELN favorable and adverse states using DESeq2 (v 1.22.2) (8), with default FDR adjustment of P values for multiple hypothesis testing. Differentially expressed genes were filtered for FDR < 0.05 in both cohorts. Heatmaps were generated in R using corrplot (v 0.84). Gene Set Enrichment Analysis (GSEA) was performed using the standalone GSEA software and associated Molecular Signature Database (MSigDB) as previously described (9). ATF4 target genes with core enrichment (9) in the TCGA (genes: IFI44, CXCL2, CLIC4, CALCRL, DPYSL2, ANGPTL4, DDIT4, PDE4DIP, INPP4B, ABCB1, SLC7A1, SYNJ2, PLA2G12A, RAB39B) and Clinseq cohorts (genes: INPP4B, CALCRL, RAB39B, SPRED1, ABCB1, SYNJ2, IL1R1, CXCL2, IFI44, SERPINB9, PDE4DIP) respectively were selected to generate patient-wise heatmaps. Read counts per million for these genes for individual patients were row-normalized prior to hierarchical clustering. To derive a missplicing score for protein translation genes, an average z-score was calculated from the inclusion values of those protein translation related genes with splicing alterations predicted to have protein domain functional alterations and with the most significant inclusion value differences in each cohort. Heatmaps were generated from the calculated average z-score of the inclusion values.

Pathway analyses were performed using the “core analysis” function of IPA (Qiagen, USA)  (10). Bubble plots for pathway analysis were generated using R package ggplot2 (v 3.1.0) (11).

Protein domain effect predictions 
Chromosomal coordinates of each spliced event (skipped exon/intron, upstream exon and downstream exon) were mapped to the respective transcript, which was then considered as the canonical isoform. Next, the alternatively spliced event (e.g. in the case of a skipped exon, the skipped exon) was removed from the canonical transcript to create the alternative isoform. Two GTF file were generated, one for the canonical isoform and other one for the alterative isoform. FASTA sequences were retrieved for individual isoforms using gffread (v0.11.4, https://github.com/gpertea/gffread ). The FASTA sequences were then translated, and predicted motifs were retrieved from protein domain databases (i.e. pfam, ProSite and SMART) using InterProScan (v5.30-69.0) (12), run in nucleotide mode using default setting.  InterProScan outputs were then parsed and compared using Perl script to identify loss/gain of protein domain(s) after splicing. Oncoprint plots were generated in R using complexHeatmap (v 1.20.0).

Transcript motif analyses
Differentially spliced events were analysed for RNA binding protein (RBP) motifs using rMAPS (13). rMAPS was run separately for each splicing event type. rMAPS scanned 114 RBP motifs with a sliding window of 50 bases. Shapiro score and maximum entropy score were generated for splice acceptor (21 bases) and donor (9 bases) sites of skipped exons using MaxEntScan (14). Splicing score density of skipped exon and constitutive exons plotted using R. Sequence logos of accepter and donor sites were generated using WebLogo to study non-canonical splice site usage. 

Protein interaction networks 
The stringApp plugin from Cytoscape (15), an open source software platform for visualizing complex networks, was used to generate biological networks for proteins of interest e.g. A protein-protein interaction network was generated for genes containing differentially spliced exons. Filters were applied to specifically import only experimentally validated interactions from StringDB (16), a Search Tool for the Retrieval of Interacting proteins database. The nodes of the network, which are the interacting proteins, were then colour-coded using formatted attribute files in the cytoscape environment. A Cytoscape plugin ClueGO (17) was used to identify enriched networks based on gene features such as gene ontologies for a better biological interpretation of the genes of interest.

Prognostic model generation  
To develop the splicing signature, we used clinical and splicing information of the ELN Favorable and Adverse patients from TCGA (n=62) and Clinseq (n=117) cohorts. The Caret package (v 6.0.82, built under R v3.5.3) was used to split the 179 patients into training (80%) and test (20%) sets.  LASSO Cox Regression with ten fold cross validation implemented in glmnet (R package v 2.0-16) (18) was performed on the training set to identify splicing prognostic markers. This was repeated ten times to build a robust model. Each fitted model was evaluated for relative survival risk prediction in the test set. The most consistent splicing events were shortlisted for the final splicing prognostic model. The splicing risk score for each patient is calculated by a sum of the normalized splicing score weighted by their regression coefficients derived from LASSO: Splicing risk score was calculated as
= (MYO9B × 0.3453601866) + (GAS5 × 0.1157416389) + (GIGYF2 × 0.0805312505) + (RPS9 × 0.0577872919). A median threshold was used to classify patients into high or low risk groups. The splicing based prognostic model was compared against LSC17 (gene expression signature) (19) and ELN (20,21) and used to improve the accuracy of prediction of ELN and LSC17. The performance of each model was assessed by Harrell’s C index implemented using the survcomp (v1.32.0) (22) R package. Kaplan-Meier survival estimations were done in Graphpad Prism (v8.0.2).  Risk contributions and variable importance of all prognostic models were estimated by a covariance approach described previously (23).  R (v 3.5.3) was used for statistical analysis and generating plots. 


Supplementary Figure Legends
Supplementary Figure 1. (A) Consort diagram illustrating the selection of patients in the TCGA cohort. (B) Consort diagram for patient selection in the Clinseq cohort. (C) Distribution of differentially spliced events identified comparing ELNFav and ELNAdv in the TCGA (left panel) and Clinseq (right panel) cohorts. SE, skipped exons. RI, retained introns. MXE, mutually exclusive exons. A5’SS, alternative 5’ splice sites. A3’SS, alternative 3’ splice sites. (D) Sashimi plot of a representative alternative 3’ splice site usage event in the SSH3 gene in the TCGA data. Sequencing reads indicate usage of an alternate 3’ splice site in  ELNAdv patients (representative patients: #2820, #2838, red tracks) compared to ELNFav patients (representative patients: #2835, #2818, orange tracks). Lines connecting each exon represent splice junctions and numbers on each line represent number of supporting RNA-seq reads. (E) Sashimi plot of a representative alternative 5’ splice site usage event in the ULK3 gene in the TCGA data. Representation as in (B). (F) Ingenuity Pathway Analyses of Class A (left) or Class B (right) genes only. Pathways that were detected in analyses of the combined set of Class A and Class B genes (shown in Fig 1J) are highlighted in bold.(G) ClueGO network interaction diagram of the 222 commonly spliced genes, with nodes representing functional pathways and edges indicating functional connections. Related to Figure 1.

Supplementary Figure 2. (A) LOGO analyses of splice acceptor sites of exons differentially retained (left) or skipped (right) in ELNAdv patients. Boxed region indicates the +1 position. (B-D) Motif scanning analyses for PABPC1 (B), RBM46 (C) and SRSF3 (D) binding sites across a meta-exon generated from the differentially spliced events, with arrows indicating peaks of significant over-enrichment. Motif enrichment scores (left axes) and P values (right axes) are shown. The dashed lines indicate scores of skipped (red) and retained (blue) exons, while the black solid line indicates that of a background score from all non-differentially spliced exons. The green horizontal lines are set at p=0.05. (E) Interaction network indicating validated protein-protein interactions (edges) between the differentially spliced, with predicted functional impairment, splicing genes (nodes).  Related to Figure 3.

Supplementary Figure 3. (A) Harrell’s C-index of risk classification by ELN, Splicing signature or LSC17 of TCGA-AML (left) or Clinseq-AML (right) patients. (B) TCGA-AML patients classified initially by ELN (left panel) and re-classified by the Splicing Signature (right panel). Sankey flow diagrams (middle panel) illustrate the redistribution of patients, with the widths of the lines proportional to numbers of patients redistributed (number also denoted). P-values were computed using Log-rank (Mantel-Cox) test. (C) TCGA-AML patients classified initially by LSC17 (left panel) and re-classified by the Splicing Signature (right panel). Representation similar to (A). (D) Clinseq-AML patients classified initially by ELN (left panel) and re-classified by the Splicing Signature (right panel). Representation similar to (A). (E) Clinseq-AML patients classified initially by LSC17 (left panel) and re-classified by the Splicing Signature (right panel). Representation similar to (A). (F-G) Harrell’s C-indices comparing risk classification by ELN, ELN + Splicing Signature, LSC17 or LSC17+ Splicing Signature of TCGA-AML (F) or Clinseq-AML (G) patients. Related to Figure 5

[bookmark: _GoBack]Supplementary Figure 4. (A) Consort diagram illustrating the selection of patients in the BEAT-AML cohort. (B) BEAT-AML patients classified initially by ELN (left panel) and re-classified by the Splicing Signature (right panel). Sankey flow diagrams (middle panel) illustrate the redistribution of patients, with the widths of the lines proportional to numbers of patients redistributed (number also denoted). P-values were computed using Log-rank (Mantel-Cox) test. (C) BEAT-AML patients classified initially by LSC17 (left panel) and re-classified by the Splicing Signature (right panel). Representation similar to (B). (D) Patients classified initially by ELN (left panel) and re-classified by the combination of the LSC17 and Splicing Signature (right panel). Representation similar to (B). (E) Harrell’s C-indices comparing risk classification by ELN, ELN + Splicing Signature, LSC17, LSC17+ Splicing Signature or ELN + LSC17 + Splicing Signature in the BEAT-AML cohort. Related to Figure 5. 


Supplementary Tables

Supplementary Table 1: Patient characteristics
Supplementary Table 2: List of alternative splicing events from the TCGA-AML cohort, comparing ELN-Fav and ELN-Adv patients
Supplementary Table 3: List of alternative splicing events from the Clinseq cohort
Supplementary Table 4: List of shared, commonly differentially spliced genes between the TCGA and Clinseq AML cohorts
Supplementary Table 5: Ingenuity Pathway analyses of differentially alternatively spliced genes 
Supplementary Table 6: List of differentially expressed genes comparing ELN-Fav and ELN-Adv patients, in the TCGA cohort, Clinseq cohort and commonly shared.
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