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1 Experimental Database 

1.1 Training Data Source  
 
The gene expression and clinical data from Sotiriou et al. (1) were used as training set. There 
were 7,650 genes assayed by cDNA microarrays on 99 patient samples.  All of the tumors were 
invasive ductal carcinomas: 46 patients were node negative and 53 were node positive (please 
refer to the original paper for the details). The data were publicly available as the supporting 
information on the PNAS website: http://www.pnas.org/cgi/content/full/100/18/10393. 
 

1.2 Training Data Pre-processing  
 
The data pre-processing of the training set consists of two steps: (1) remove genes with more 
than five missing values across all the samples.  In this step, 559 genes were eliminated, and (2) 
replace missing values by using the EMV package in software R (http://www.r-project.org).  
Missing values were estimated based on a k-nearest-neighbor algorithm (k = 20).  This algorithm 
first selects k nearest genes that do not contain any missing values to the one containing at least 
one missing value, based on the Euclidean distance.  Then, the missing values are replaced by 
the average of the neighbors.  After the data pre-processing was performed, 7,091 genes 
remained in the data set.  
 

1.3 Validation Data Sources 
 
Two validation data sets were used in our analysis.  One was from a publication by Sorlie et al. 
(2), which is available from the website: 
http://smd.stanford.edu/cgi-bin/publication/viewPublication.pl?pub_no=95.  The data set in 
Sorlie et al. (2) includes 9,216 genes screened on 78 patient samples.  We used the expression 
profiles of 58 patients in our model validation.  The remaining cases were not included because 
patient disease-free survival information was not available.   
 
The other data set was from van't Veer et al. (3), which is available at: 
http://www.rii.com/publications/2002/vantveer.html.  This data set contains 24,500 genes 
screened on 98 patient samples.  In the studied cohort, 34 patients developed metastasis within 5 
years and 44 patients continued to be disease-free after five years.  In addition, there were 18 
patients with BRCA1 germline mutations and two BRCA2 carriers.  In our validation, we used 
the cohort of 78 patients, excluding 20 patients with BRCA mutations.   
 
 

2. Study Design 
 
We built a prediction model for each of three prognostic factors: relapse/metastases potential 
(relapse/metastases within five years vs. disease-free in five years), nodal status (node negative 
vs. node positive), and tumor grade (grade 1/2 vs. 3).  Using the data set from Sotiriou et al. (1), 
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the classification models for nodal status and tumor grade were constructed based on the 
expression levels of  7,091 genes (after pre-processing) on 99 clinical specimens.  The prediction 
model for 5-year disease-free survival was built on 96 clinical samples, omitting 3 patients 
whose 5-year relapse-free survival could not be determined. 
 
Marker genes from these prognostic models were identified by using a combination of Random 
Forests of software R (http://www.r-project.org) and Linear Discriminant Analysis of Software 
SAS (http://www.sas.com/).  Random forests were first used to select a small subset of genes, and 
then, Linear Discriminant Analysis was used to further refine the gene signatures.  Feature 
selection is important to identify relevant and important genes and to remove irrelevant genes 
and noise from large scale microarray data sets.  The random forests algorithm (4) utilizes an 
ensemble of classification trees.  Random forests are characterized as an effective machine 
learning method for processing noisy large-scale data sets.  Therefore, we employed this 
algorithm to filter out non-informative genes sequentially until a small subset of genes was 
obtained.  Then, SAS PROC STEPDISC procedure for Linear Discriminant Analysis was used to 
further filter out more genes.  Backward elimination in PROC STEPDISC selected a much 
smaller subset of genes that generated favorable prediction accuracy.  The details of both random 
forests and discriminant analysis are described in the following sections.  
 
 

3. Random Forests 
 
Random forests are a generalization of the standard tree algorithms (5). The random forests (4) 
algorithm is an ensemble of un-pruned classification trees. The basic step of random forests is to 
form diverse base tree classifiers from a single training set.  Two sources of randomness are 
introduced: (1) each tree is built upon a bootstrap sample (a random sample taken with 
replacement) from the training set.  Bootstrapping generates diverse versions of training data (6), 
and  (2) only a subset of variables is explored to split each node in the tree.  Therefore, the 
optimal split of a single node is based on a random subset of the variables instead of the whole 
variables set.  Each tree generates its own classification rules.  The classification decision for a 
given input case is made by majority voting over all trees.  
 
About one-third of the cases in the bootstrap sample are not used to construct a classification 
tree.   These samples are called out-of-bag (OOB) cases.  For each tree, the OOB cases are used 
to get a classification result.  For each sample in the training set, the final classification of the 
forest is the class having the most votes from the bootstrapped OOB cases. Comparison between 
this classification and the real class label in the data generates an unbiased estimator of the error 
rate.  Therefore, random forests do not need a separate test set or additional cross-validation to 
evaluate its results (4).  
 
A very important function of random forests is variable importance evaluation.  The importance 
of a variable is defined in terms of its contribution to classification accuracy.  Based on the 
variable importance measure, backward elimination was performed to identify the gene subset 
with the smallest OOB error rate.  Here, the OOB error rate was not used to assess the prediction 
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accuracy of the identified gene subsets.  Instead, it served as a stopping rule for feature selection.  
The varSelRF package of R (7) was used according to the following steps: 
 

(1). Build a forest with N trees and obtain a ranking of variable importance 
(2). Remove 20% of the least important variables 
(3). Construct a new forest with K trees 
(4). Repeat steps (2) and (3) until two genes are left 
(5). Select the gene subset with the smallest OOB error rate 

 
In the experiments, we chose N = 3,000 and K =1,000 because a large number of trees in the 
initial forest is likely to produce stable importance measures (7).  We did not follow the “1-
Standard Error (1-SE) rule” as suggested by Diaz-Uriarte et al. (7).  This rule chooses the 
smallest gene subset, whose error rate is within one standard error of the minimum error rate of 
all forests.  We used the “0-Standard Error (0-SE) rule”, which identifies the gene subset with the 
smallest OOB error rate.  The “0-SE rule” usually selects more genes than the “1-SE rule”.  
Since further gene filtering would be pursued by using Linear Discriminant Analysis, we chose 
the gene subsets with the lowest prediction error for modeling disease-free survival, nodal status, 
and tumor grade (Table 1). Figure 1 shows the feature selection process in each model by using 
random forests. 
 
 
 
Table S1. Summary of feature selection processes for each prediction model. The discriminant function 
was used to compute the prediction accuracies. 
 

 
Model  

 

# of Genes 
Obtained 

Using 
Random 
Forests 

# of Genes 
Obtained Using 

SAS PROC 
STEPDISC 

 
Accuracy 

 
Sensitivity 

 
Specificity

5-Year-Relapse 
(relapse vs. 
relapse-free) 

 
66  

 
29 

 
92% 

(88/96) 

 
90% 

(53/59) 

 
95% 

(35/37) 
Nodal Status 
(positive vs. 
negative) 

 
42 

 
14 

 
80% 

(79/99) 

 
83% 

(44/53) 

 
76% 

(35/46) 
Tumor Grade 
(grade 1/2 vs. 3) 

18  9 85% 
(84/99) 

87% 
(39/45) 

83% 
(45/54) 
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Figure S1. Feature selection using random forests. In each panel, the red line indicates the OOB error rate 
(vertical axis) at different number of genes (horizontal axis). The two dashed lines are two standard errors 
above/below the error rates.  A. Disease-free survival; B. Nodal Status; C. Tumor Grade. 
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4. Linear Discriminant Analysis  
 
Discriminant analysis was used to determine which variables discriminate two or more naturally 
occurring groups in prognosis.  Given a number of variables as the data representation, each 
class is modeled as multivariate normal distribution with a covariance matrix and a mean vector.  
Instances are classified to the label of the nearest mean vector based on Mahalanobis distance.  
The decision surfaces between classes become linear if the classes have a common covariance 
matrix.  
 
When the distribution within each group is assumed to be multivariate normal, a parametric 
method can be used to develop a discriminant function (SAS User’s Guide, version 9.1). Such 
function is determined by a measure of generalized square distance which is based on the pooled 
covariance matrix as well as the prior probabilities of group membership. The generalized 
squared distance  from input x to class i is: Di

2(x)
 

Di
2(x) = di

2(x) + g(i) 
 
where  is the squared distance from x to group I;  mdi

2(x) = (x − mi)'V
−1(x − mi) i is the p-

dimensional mean vector for group I;  V is the pooled covariance matrix; and  g(i) depends on the 
prior probability of class i.  In practice, the prior probability can be assumed as equal for all 
groups.  In this study, we assumed equal prior probability and thus g(i) = 0.  x is classified into 
class i if D  is the smallest among all the distance measures.  i

2(x)

A common application of discriminant function analysis is feature selection, i.e., determining the 
attributes that discriminate between classes.  In this study, we selected features using a stepwise 
backward search with SAS PROC STEPDISC.  Initially, all variables (i.e., genes) in the subset 
identified using random forests are included in the model and the variable that contributes the 
least to the prediction of class membership then is eliminated.  By doing so, one would only keep 
the variables that contribute the most to the discrimination between classes in the model.  The 
final gene subsets obtained from SAS PROC STEPDISC for each prognostic model are shown in 
Tables 2-4.  We used leave-one-out cross-validation to assess the prediction accuracy.  The 
classification accuracies based on the final gene set in each model are shown in Table 1.  
 
 
 
Table S2. A 28-gene relapse signature.  This gene signature achieves 92% accuracy in predicting the 
relapse status (relapse vs. relapse-free in a 5-year period). Note: ‘-’ means that the gene name is not 
available.  
 

Gene Spot ID Clone_IMAGE  UniGene Cluster ID 
- 3912 198917  Hs.463079 
TOMM70A 4919 198312  Hs.227253 
MCF2 2370 268412  Hs.387262 
RAD52 Pseudogene 418 1377154  Hs.552577 
MCM2 1881 239799  Hs.477481 
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C18B11 5984 131988  Hs.173311 
SEC13L 6497 757210  Hs.301048 
SLC25A5 5182 291660  Hs.522767 
PLSCR1 6959 268736  Hs.130759 
TXNRD1 7296 789376  Hs.434367 
RAD50 2925 261828  Hs.242635 
- 6498 46196  
INPPL1 1987 703964  Hs.523875 
- 583 501651  Hs.439445 
TXNRD1 6736 789376  Hs.434367 
PBX2 536 80549  Hs.509545 
SSBP1 3434 125183  Hs.490394 
- 2403 34396  Hs.448229 
PDGFRA 6674 376499  Hs.74615 
- 6555 488202  Hs.49433 
DDOST 2416 50666  Hs.523145 
- 2276 182930  Hs.497723 
S100P 5593 135221  Hs.2962 
FAT 7009 591266  Hs.481371 
FGF2 3514 324383  Hs.284244 
INSM1 3061 22895  Hs.89584 
IRF5 5962 260035  Hs.521181 
SMARCD2 2923 741067  Hs.250581 
MAP2K2 1652 769579  Hs.465627 

 
 
 
 
Table S3. A 14-gene signature achieves 80% accuracy in predicting nodal status (positive vs. negative).  
 

Gene SPOT ID Well ID Clone IMAGE UniGene Cluster ID 
TLR5 1635 208694 277229  Hs.114408 
FLJ21128 2062 207691 279077  Hs.96852 
RBMX 2159 202137 841352  Hs.380118 
- 3303 27894 955999  Hs.522309 
HOXD1 3607 202214 342593  Hs.83465 
- 3735 26914   
- 4151 209569 50635  Hs.390738 
VEGFB 4777 28189 167296  Hs.78781 
STK12 4825 28957 241029  Hs.442658 
MAPK12 5195 27254 309482  Hs.432642 
BIRC3 6757 150040 428231  Hs.127799 
ITGA7 6932 208400 377671  Hs.524484 
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CHC1L 7058 200264 768316  Hs.25447 
SCYB14 7385 207798 345034  Hs.483444 

 
 
 
Table S4. A 9-gene signature achieves 85% accuracy in predicting tumor grade (grade 1/2 vs. 3).  
 

Gene SPOT ID Well ID Clone IMAGE UniGene Cluster ID 
ALDH3A2 879 27777 767804  Hs.499886 
NK4 1509 201566 810859  Hs.943 
BUB1 3087 208790 781047  Hs.469649 
RUNX1 3928 201479 773215  Hs.149261, Hs.278446 
ZSIG37 4160 209599 78844  Hs.201398 
SSI-1 5865 201673 712668  Hs.50640 
HDAC2 6713 28381 712866  Hs.3352 
HMG2 2353 28253 341782  Hs.434953 
NFIX 3177 200222 754600  Hs.257970 

 
 
 
 

5. Time-dependent ROC Curves 
 
Both sensitivity and specificity are the most widely used statistics to describe a diagnostic test. 
Sensitivity measures the probability of a positive test among patients with disease, while 
specificity quantifies the chance of a negative test among patients without disease.  Receiver 
operating characteristics (ROC) curve displays 1- specificity vs. sensitivity of a diagnostic marker 
for a binary disease variable.  ROC analysis interprets the predictive power of a diagnostic test.  
A good diagnostic test is supported by a marker which is powerful in distinguishing between the 
two classes of the disease variable.  Since many disease outcomes vary over time, time-
dependent ROC analysis extends the concepts of sensitivity, specificity, and ROC curves for 
time-dependent binary disease variables in censored data.  
 
In our study, the binary disease variable Ri(t) = 1, if patient i has recurrent or metastatic breast 
cancer prior to time t; otherwise, Ri(t) = 0.  For a diagnostic marker M, both sensitivity and 
specificity are defined as a function of time t: 
 

  
sensitivity(c,t) = P M > c | R(t) =1 }{
specificity(c, t) = P M ≤ c | R(t) = 0 }{

 

 
A ROC(t) is a function of t at different cutoffs c.  A time-dependent ROC curve is a plot of 1 – 
specificity(c, t) vs. sensitivity(c, t). The area under the ROC curve (AUC) is used as an accuracy 
measure of the ROC curve.  A higher prediction accuracy is evidenced by a larger AUC(t) (8;9). 
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We identified a 28-gene relapse signature from the training set (1).  Five-year disease-free 
survival prediction accuracy of the 28-gene signature was 0.983 on the training set (1),  0.843 on 
one validation set from van’t Veer et al. (3), and 0.764 on another validation set from Sorlie et 
al. (2).  A Cox proportional hazards model (10) was built upon the signature and the risk score 
was used for constructing the time-dependent ROC curve on the training data (Figure 2 A).  
Figure 2 C shows the evolution of the AUC in the time cause on the training data.  The 
horizontal dashed line indicates the AUC of a weak classifier (AUC = 0.50).  The vertical dashed 
line indicates the 5-year cutoff.  To validate the discriminatory power of our identified gene 
signature, two validation sets were used.  From each validation set, we identified the genes that 
are common to our 28-gene signature.  Eight genes were found in the data generated by Sorlie et 
al. (2), including one unknown gene.  We used Unigene Cluster ID to search for the common 
genes in this data set, such that unknown genes without any gene names could be identified.  
Twenty-five genes were obtained from the data generated by van’t Veer et al. (3), in which four 
genes were duplicated.  Since no Unigene Cluster ID was available in this data set, we used gene 
names to identify overlapped genes, and found that four genes appeared twice.  The time-
dependent ROC curves based on these two validation data sets are demonstrated in Figure 2B; 
the AUC vs. time is shown in Figure 2D.  
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Figure S2. Time dependent ROC analyses of the 28-gene signature in disease-free survival prediction on 
three patient cohorts.  
A. Time dependent ROC (t = 5 years) curve of the 28-gene signature on the training set generated by 
Sotiriou et al.(1)  AUC = 0.983. 
B. Time-dependent ROC (t = 5 years) curves of the 28-gene signature on two validation sets.  AUC = 
0.843 with the 25 overlapping genes on the set from van’t Veer et al.(3); AUC =  0.764 with 8 
overlapping genes on the set from Sorlie et al. (2).  
C. Area under the ROC curve in year 1 to year 11 on the training set (1).  
D. Area under the ROC curve in year 1 to year 13 on the two validation data sets (2;3).  
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This 28-gene signature is also predictive of overall survival.  Using time-dependent ROC 
analyses for overall survival time, the prediction accuracy of the 28-gene signature was 0.927 on 
the training set (1) (Figure 3 A) and 0.808 on the validation set generated by Sorlie et al. (2)  
(Figure 3 B).  
 
 
 
             A                                                                                B 

       
 
 
Figure S3. Time dependent ROC analyses of the 28-gene signature in the prediction of overall survival.  
A. Time-dependent ROC curves at time = 5 years (Sotiriou et al: AUC = 0.927; Sorlie et al: AUC = 
0.808). 
B. the area under the ROC curve (AUC) at different time points. 
 
 

6. Determine Risk Groups 
 
To assess a breast cancer patient’s relapse and metastatic potential, risk scores were generated by 
using a Cox model of the 28-gene signature, independent of clinical-pathological parameters.  A 
large value of the risk scores indicates a high risk of relapse/metastases, while a small value 
indicates a lower risk of breast cancer relapse.  Our 28-gene signature obtained from the training 
set (1) was fitted into a Cox regression model as covariates.  To avoid overfitting, we randomly 
split the data set into two subsets – one was used to define risk groups by fitting the model and 
obtaining the risk score cutoffs; the other subset was used to validate the cutoffs for defining the 
risk groups.  The distribution of the risk scores from the training subset was used to divide the 
patients into three groups: high-risk, low-risk, and intermediate-risk.  The cutoffs defined in the 
training subset were used to separate the patients in the test subset into high, low and 
intermediate risk groups.  
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The percentage of patients categorized into high, low, or intermediate risk group was 39%, 26%, 
and 35%, respectively.  Table 5 displays the clinical characteristics of each risk group, including 
average relapse-free days, ER status, Her2/neu overexpression, nodal status, age, tumor size, and 
treatment received on the data from Sotiriou et al.(1).  Same analysis was applied to the two 
validation sets.  Table 6 summarizes the clinical characteristics of each risk group, including 
average metastases-free days, ER and PR status, age, tumor size, and tumor grade on the data 
from van’t Veer et al. (3).  Table 7 summarizes the clinical characteristics of each risk group, 
including average relapse-free days, ER status, age, and tumor grade on the data from Sorlie et 
al.(2).  Kaplan-Meier analyses showed that disease-free survival was significantly different for 
each risk group in all three data sets (p < 0.005, log-rank test; Figure 4).  
 
 
Table S5. Clinical characteristics of each risk group (Sotiriou et al.(1)) 
 

Risk 
Group 

 

Average 
RFS 

(days) 

% of 
Age ≥ 
50 yrs 

# of  
Her-2\neu 

positive 
cases 

% of 
Tumor 

Size > 2cm 
 

% of 
Positive 
Nodal 
Status 

% of 
Chemo 

% of 
Hormone 

% of 
ER + 

High  969 82% 6 82% 67% 38% 79% 54% 
Intermediate 2407 73% 1 58% 50% 35% 85% 58% 
Low 2781 65% 0 47% 41% 24% 74% 85% 
 
 
 
Table S6. Clinical characteristics of each risk group (van’t Veer et al. (3))  
 

Risk 
Group 

 

% of 
Patients 

Average 
RFS 

(days) 

% of 
Age ≥ 50 

% of 
tumor size 

> 2 cm 

% of 
ER + 

% of  
PR + 

 % of 
Tumor 
Grade 3 

High 27% 884 33% 67% 57% 38% 81% 
Intermediate 33% 2284 19% 42% 96% 88% 77% 
Low 40% 2988 32% 32% 77% 71% 42% 
 
 
 
Table S7. Clinical characteristics of each risk group (Sorlie et al. (2))  
 

Risk 
Group 

 

% of 
Patients 

Average 
RFS 

(days) 

% of 
Age ≥ 50 

% of  
ER +  

  % of 
Tumor 
Grade 3 

% of 
T3/T4  

Tumors 
High 28% 553 50% 69% 81% 94% 
Intermediate 32% 801 84% 89% 26% 89% 
Low 40% 1376 70% 73% 32% 77% 
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Figure S4. Kaplan-Meier analysis of disease-free survival of three risk groups in three patient cohorts. 
A. Kaplan-Meier analysis on data from Sotiriou et al. (1).  B. Kaplan-Meier analysis on data from van’t 
Veer et al.(3).  C. Kaplan-Meier analysis on data from Sorlie et al.(2).  
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In this study, we also evaluated the association between the risk groups and the clinical-
pathological parameters on three data sets (1-3) by using either Chi-square test or Fisher’s exact 
test.  Chi square test was used, if its assumptions were satisfied.  Otherwise,  Fisher’s test was 
used.  Table 8 reports the P values resulted from the tests.  The results indicated that our 
identified 28-gene relapse/metastases signature was indicative of the clinical parameters 
including tumor size, grade, ER/PR status, and Her2/neu overexpression.    
 
 
Table S8.  The association between risk groups and clinical-pathological parameters in  
three patient cohorts.  
 
 P Values 
Risk Groups vs. Sotiriou et al.(1) van’t Veer et al.(3) Sorlie et al.(2) 

Age 1 

(<50 yrs or ≥ 50yrs)  
0.243 0.458  0.095 

Tumor size 
(<2 cm or >2cm) 

0.006* 0.047*  

Tumor grade 
(1/2 vs. 3) 

0.041* 0.004* 
 

0.001* 

ER status 0.011* 0.004* 0.296 
PR status  0.001*  
Her2/neu 0.020*   

 
1The percentage of patients who were at least 50 years old was 74%, 28%, and 69% in the 
cohorts from Sotiriou et al. (1),  van’t Veer et al. (3), and Sorlie et al. (2), respectively.  
 
 
To assess the therapeutic benefits for each risk group, average relapse-free survival days were 
compared for patients receiving adjuvant therapy in each group using the data from Sotiriou et 
al. (1).  Specifically, therapeutic effects for patients receiving chemotherapy alone, hormonal 
therapy alone, or both chemo and hormone therapy were compared for each risk group. The 
observation in Table 9 is consistent with current clinical practice.  
 
 
Table S9. Breast cancer therapeutic benefits assessment.  
 
 Average RFS (days) 
Risk Group Chemo Alone Hormonal Alone Chemo + Hormonal 
High 613 (5 patients) 1005 (21 patients) 1048 (10 patients) 
Intermediate 1478 (1 patient)   2496 (15 patients) 2262 (7 patients) 
Low 3632 (4 patients) 2734 (20 patients) 2545 (5 patients) 
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