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Supplementary Figure S1. p300 is a potential target in HCC. 
(A) Western blotting showed the upregulation of p300 in HCC tissues (T) compared with noncancerous tissues (N). The numbers indicated semi-quantitative analysis of each line. HSP90 was used as an internal control for the semi-quantitative analysis. N was adjusted to 1. (B) RT-PCR analysis of the expression of p300 in HCC cell lines and primary human hepatocytes. The data are presented as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001. (C) Western blotting analysis shows that the expression of H3K27Ac and H3K18Ac was decreased after transfection with siRNA targeting p300 for 72h.
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Supplementary Figure S2. B029-2 is a potential and selective catalytic p300/CBP inhibitor that targets HCC. 
 (A) The selectivity profiles of B029-2. (B) Overlay of our modelled structure of B029-2 to A485 with p300 HAT domain (PDB:5KJ2). B029-2 and A485 was shown as sticks in cyan and salmon red, respectively. P300 HAT domain was shown as cartoon in gray. (C) In vivo PK data for compound B029-2 in male ICR (CD-1) mice. (D, E) B029-2 inhibits H3K27Ac and H3K18Ac more potently than A-485. Huh-7 (D) and Hep3B (E) cells were treated with B029-2 and A-485 for 72 hours, respectively. (F) IC50 of B029-2, B026 and A-485 in Huh-7 and Hep3B cells. (G) IC50 of B029-2 in primary human hepatocytes.
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Supplementary Figure S3. Targeting p300 suppresses the cell-proliferation of HCC cells.
(A) The effect of p300 knockdown on cell-proliferation in HCC cells. (B) B029-2 induces G1 arrest in HCC cells. (C) RT-PCR analysis of the expression of CCND1 after B029-2 treatment for 48h in Huh-7 and Hep3B cells. (D) Mouse weight of Huh-7 xenografts. (E) RT-PCR analysis of the expression of CCND1 in tumor nodules. The data are presented as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Supplementary Figure S4. B029-2 regulates the expression of ribosome protein genes. 
(A) GSEA analyses of the ribosome gene signature in control (DMSO) and B029-2-treated Huh-7 cells. (B) RT-PCR analysis of the expression of ten randomly selected ribosomal protein genes in control (DMSO) and B029-2-treated Huh-7 and Hep3B cells. The data are presented as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Supplementary Figure S5. The expression status of metabolic enzymes in liver hepatocellular carcinoma (LIHC) patients. 
(A) Kaplan-Meier analysis of overall survival for PSPH, DTYMK, ALDH18A1, PSAT1, TALDO1, and ATIC in 364 LIHC patients (n(high)=182; n(low)=182). (B) The distribution of RNA expression of PSPH, DTYMK, ALDH18A1, PSAT1, TALDO1, and ATIC in TCGA noncancerous samples and LIHC tumour samples (n(T)=369; n(N)=160). (C) Correlations between p300 and PSPH, DTYMK, ALDH18A1, PSAT1, TALDO1, and ATIC mRNA expression in the TCGA LIHC dataset. (T is the abbreviation for tumour tissue, N is the abbreviation for noncancerous tissue).
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Supplementary Figure S6. Epigenetic regulation of metabolic enzymes in HCC via the histone acetyltransferase activity of p300/CBP.
(A) Genome-browser view of the H3K27ac-ChIP-seq and H3K9ac-ChIP-seq peaks on the PSPH, DTYMK, ALDH18A1, PSAT1, TALDO1, and ATIC genes in Huh-7 cells, HepG2 cells, Hep3B cells and HCC tissues (data from Cistrome Data Browser). The primers used in ChIP assays are indicated by the rectangular frame. (B) ChIP assays were performed to analyse H3K18Ac, H3K27Ac, H3K9Ac and H3K14Ac occupancy at the promoters of the six enzyme genes in Huh-7 cells. The data are presented as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Supplementary Figure S7. B029-2 treatment reduced the occupation of p300 and BRD4 on the promoters of the six metabolic genes.
 (A, B) ChIP assays were performed to analyse p300 and BRD4 occupancy at the promoters of the six enzyme genes in Huh-7 cells (A) and treated with B029-2 (B). CCND1 was used as a positive control. DNA samples from immunoprecipitation with normal rabbit IgG were used as controls. The data are presented as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Supplementary Figure S8. Suppressing the expression of PSPH and DTYMK inhibits HCC progression. 
 (A) PSPH and DTYMK were overexpressed in HCC tissues compared with noncancerous tissues (33 paired). (B) B029-2 treatment reduced the expression of PSPH and DTYMK mRNA in Huh-7 xenografts. (C, D) PSPH and DTYMK levels in Huh-7 cells and Hep3B cells after transfection with siRNA. (E-H) migration (E, G) and invasion (F, H) of Huh-7 and Hep3B cells were significantly decreased in HCC cells with PSPH and DTYMK knockdown. (I) PSPH and DTYMK knockdown Huh-7 cells have reduced glycolytic activities. The data are presented as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Supplementary Figure S9. Overexpression of PSPH and DTYMK partially reversed the inhibitory effects of B029-2 on HCC cells. 
(A, B) Huh-7 and Hep3B cells were subjected to lentivirus-mediated overexpression of PSPH and DTYMK. The mRNA (A) and protein (B) levels were measured. (C) PSPH or DTYMK overexpression partially attenuated the effects of B029-2 on migration of Huh-7 and Hep3B cells. (D) PSPH or DTYMK overexpression partially attenuated the effects of B029-2 on the invasion of Huh-7 and Hep3B cells. (E) PSPH or DTYMK overexpression partially attenuated the effects of B029-2 on the glycolytic activities of HCC cells. (F) HPLC analysis of nucleotides after PSPH or DTYMK overexpression and B029-2-treated (0.1μM) in Huh-7 cells. The data are presented as the mean ± SD. * p < 0.05, ** p < 0.01, *** p< 0.001.
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Supplementary Figure S10. Overexpression of PSPH and DTYMK partially reversed the inhibitory effects of B029-2 on HCC xenografts. 
(A) Images of tumor nodules from the subcutaneous mouse xenograft models (n = 8 in each group). (B) Growth curves of Huh-7 xenografts with/without PSPH or DTYMK overexpression and treated with B029-2 (2.5mg/kg) or vehicle. (C) Tumor weight of Huh-7 xenografts with/without PSPH or DTYMK overexpression and treated with B029-2 (2.5mg/kg) or vehicle. The data are presented as the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001. (D) RT-PCR analysis of the levels of PSPH and DTYMK in Huh-7 xenografts (n = 8 in each group). The data are presented as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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