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1 Supplementary Methods

1.1 Simulated datasets

We performed extensive simulations to assess the performance of our hierarchical Bayesian
model, as implemented in BAGHERA.

First, we generated datasets with a realistic genetic architecture and linkage disequilibrium
patterns using data from the 1000 Genomes Project (see Supplementary Methods 1.1.1). Since
these simulations are computationally taxing and existing tools do not scale for genome-wide
simulations, we restricted our analyses to SNPs located on chromosome 1. We used these
datasets to test the accuracy of the genome-wide heritability estimates returned by BAGHERA,
and its performances for gene-level heritability analysis.

Nonetheless, we also wanted to explore the performance of our method on whole genome
datasets, which is the common use case for our method. Thus, we simulated whole genome
summary statistics with a varying number of heritability loci and enrichments (see Supplemen-
tary Methods 1.1.2).

When assessing the performance of BAGHERA in detecting heritability loci. We remind the
reader that our model estimates the posterior distribution of ηk, whose value is the probability
of the per-SNP heritability of gene k to be higher than the per-SNP genome-wide estimate;
thus, we can test how many heritability loci are discovered as a function of ηk. Since heritability
loci are known a-priori in our simulations, we derived Receiver Operating Characteristic (ROC)
curves and computed the corresponding Area Under the Curve (AUC) for each type of simula-
tion. While ROC curves allow straightforward comparison of different experimental conditions,
they can be problematic for interpreting genomic data, since the number of positive samples is
significantly smaller than the negatives. For this reason, we also derived Precision and Recall
(PR) curves as a more accurate approach to control Type 1 errors.

Hereby, we describe the procedures implemented to generation our simulated datasets and
the main results of the simulation analysis.

1.1.1 Simulated datasets with a realistic genetic architecture

We simulated N = 50, 000 subjects and M = 100, 000 SNPs on chromosome 1 from 1000
Genome reference data from 503 European ancestry subjects, using HAPGEN2 [4] and haplo-
type data downloaded from the IMPUTE website (https://mathgen.stats.ox.ac.uk/impute/
impute_v2.html#download). We then filtered out SNPs with minor allele frequency (MAF)
smaller than 0.01, leading to a final dataset consisting of 99,586 SNPs.

We then controlled whether the simulated genetic architecture was coherent with the one
observed in Europeans. To do that, we estimated the correlation between the observed MAF
in the 1000 Genomes data and our simulated data; here we found a statistically significant
correlation between the two datasets (Pearson correlation coefficient ρ = 0.9929, P ≤ 10−5),
suggesting that our strategy was appropriate to generate a realistic genetic architecture.

Summary statistics were then simulated following a dense and gene-level effect size model.
First, we used the dense effect model to test the robustness of the genome-wide heritability
estimates. To do that, we explicitly set the variance of the SNPs to be }2 = h2/M , with h2 =
{0.01, 0.1, 0.2, 0.5}; for each parameter setting, we generated 5 different datasets. BAGHERA
correctly estimates genome-wide heritability both as the median of genome-wide term h2SNP

and as the sum of the contributions of all genes (see Supplementary Figure 1). Performance
drops for larger h2 values, which are outside the working conditions of our method.

We then assessed BAGHERA as a method for discovering heritability loci. To do that, we
set as causal only those SNPs that are located in a predefined set of loci. With this setting, we
tested whether BAGHERA was able to identify heritability loci under different genome-wide and
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local heritability levels. Out of all loci L, we selected a fraction of them, sL, as significant, with
Lsig = L×sL being the total amount of significant loci. We then assigned 90% of the variance to
the Msig SNPs falling into the Lsig loci, while the remaining 10% variance is equally distributed
to the other loci. We simulated data with h2 = {0.01, 0.05, 0.1, 0.2} and sL = 0.01 (1%); taken
together, we obtained Lsig = 13 heritability loci out of 1322 loci with more than 10 SNPs on
chromosome 1. For each parameters combination, we simulated 5 datasets. Here we found
BAGHERA to provide accurate h2SNP estimates, both as the median of the posterior of the
h2SNP term and the sum of the gene level heritability (see Supplementary Figure 2A). Similar
to the results for dense-effect simulations, performance is more unstable for larger values of
heritability. However, in the worst case scenario, h2SNP tends to be overestimated, which leads
towards more conservative statistical testing. Importantly, BAGHERA performs extremely well
in retrieving significant loci with AUCs above 90% for ROC analysis and above 50% for most PR
analysis (see Supplementary Figure 2B and C).

1.1.2 Whole genome simulated datasets

Restricting the analysis to chromosome 1 would not provide conclusive evidence about the per-
formances of our method, which was designed to run on high-density genotype data. We then
used a simpler model, which does not require genotype data, to generate simulated summary
statistics for 22 chromosomes with a varying number of heritability loci and levels of heritability
enrichment.

We assigned random effect sizes to SNPs with MAF > 0.01 in the European populations
of the 1000 Genomes Phase 3 project by sampling from a normal distribution and weighting

the random variate by wj =
√

(1 + N
M h2klj), where h2k is the gene-level heritability and lj is the

LD score of the j-th SNP in the dataset [1]. Using LD scores allow us to account for positional
constraints and LD patterns without using genotype data. We then randomly selected a fraction
of loci as heritability loci and set their heritability h2k = fck × h2SNP , where h2SNP is the genome-
wide heritability, fck is the fold-change in heritability in the locus k compared to the genome-
wide estimate.

In our experiments, we set the genome-wide heritability to h2SNP = {0.01, 0.1, 0.2}, to
mimic a disease with a reasonably low heritability, such as cancer. We then considered
p = 1% of the loci in the genome as heritability loci, and set the heritability fold-change as
fck = {1.1, 5, 10, 30}, while fold-change value fc = 1.1 is used as control. For each possible
parameter setting, we generated 3 independent datasets, which resulted in a testbed consisting
of 36 datasets in total.

Our model obtained excellent results for fold-changes ranging from 5 to 30, when the
genome wide heritability is at least 0.1. While ROC performance drops for 5 and 10 fold-change
for low heritability levels, TPR and FDR estimates prove that our testing procedure is actually
conservative (see Supplementary Figure 3) and that our model has FDR < 0.05. Finally, for
the control simulations fc = 1.1, as expected, the ROC and PR analyses show no significant
difference with respect to a random classifier (see Supplementary Figures 3, 4, and 5).

It is worth noting that the ROC curves in Supplementary Figures 4 are the detail of the ROC
AUC shown in Supplementary Figure 3.

1.2 Comparison with state-of-the-art methods

1.2.1 Comparison of genome-wide heritability estimates between BAGHERA and LDsc

We compared BAGHERA genome-wide estimates with the observed h2SNP estimates of LD
score regression (LDsc) [2]. It is straightforward to note that BAGHERA and LDsc estimates

3



follow a similar trend, although BAGHERA is more robust on low heritability malignancies, in-
cluding 9 cases where LDsc erroneously reported negative estimates (see Supplementary Fig-
ure 6).

1.2.2 Comparison of local heritability estimates between BAGHERA and HESS

We compared our estimates of local heritability with those obtained by HESS [3], which, to
date, is the only method for the estimation of local heritability using summary statistics and can
be applied on regions smaller than a chromosome.

First, we outline the main differences between the two methods, which could confuse the
interpretation of the results. HESS has been shown to provide robust heritability estimates
for genomic regions defined as LD independent. BAGHERA, instead, provides heritability esti-
mates for any non overlapping set of genomic regions, including ≈ 15, 000 protein-coding genes
in the human genome. Thus, BAGHERA can provide heritability estimates at a much higher
genomic resolution.

It is also important to also note the different output returned by BAGHERA and HESS. We
remind the reader that each region explains a portion of heritability ḧ2k =

∑Mk
j=1 }2j , where ḧ2k is

the output of HESS. With the notation we introduced in our study, ḧ2k/Mk = h2k/M , where h2k
is the gene-level heritability estimated by BAGHERA. Both methods, however, test whether the
local single SNP heritability, either h2k/M or ḧ2k/Mk, is larger than the expected genome-wide
heritability }2M .

It is also worth mentioning that the two methods implement different testing strategies; after
the estimation of local heritability, HESS converts the estimates to z-scores to obtain a p-
value for each region, and then uses Bonferroni correction to control the family-wise error rate.
BAGHERA instead uses a Bayesian hierarchical model to estimate the posterior distribution of
the genome-wide and gene-level heritability, along with the posterior distribution of the indicator
function, η, which is used to estimate the probability of the per-SNP heritability of gene k to be
higher than genome-wide estimate.

We then applied HESS and BAGHERA on the two cancer datasets from the UK Biobank
with the highest heritability: breast (C50) and prostate (C61). In order to compare local her-
itability estimates of the two methods, we used the same set of SNPs and the 1703 regions
originally used by HESS, although we filtered out 10 of them having less than 10 SNPs. For
each cancer (ICD10 code), we computed the genome-wide estimates h2, the number of sig-
nificant genomic loci, the number of significant loci found both by HESS and BAGHERA, the
correlation between the local heritability estimates (Pearson’s ρ) and the corresponding p-value
(see table below).

HESS BAGHERA
ICD10 h2(se) Significant loci h2(sd) Significant loci Common loci ρ p-value
C50 0.0111 (0.00316) 2 0.0149 (0.0018) 119 2 0.78 ≤ 10−6

C61 0.00896 (0.00316) 1 0.0098 (0.0017) 116 1 0.76 ≤ 10−6

Experimental results showed a strong consensus between the genome-wide heritability es-
timates of both methods, whereas BAGHERA the largest number of heritability loci, including
the two found by HESS. In Supplementary Figure 7 and 8, we show the results of our analysis
in detail; for each figure, the first panel shows ḧ2k estimates for HESS and BAGHERA, while the
second one is limited to the significant regions defined by BAGHERA and overlapping HESS
estimates, and the last panel, instead, rescales HESS ḧ2k estimates to BAGHERA’s h2k, as
ḧ2k/Mk ×M . It is straightforward to note that BAGHERA provides more robust local heritability
estimates, since the number of negative estimates is significantly lower than HESS, as clearly
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shown when rescaling the results. While BAGHERA might still return negative local heritability
estimates, in practice, this phenomenon is well controlled compared to HESS.

1.3 Analysis of 38 UK Biobank cancer datasets

1.3.1 Data processing and curation

We downloaded the metadata tables associated with the UK Biobank summary statistics for
cancer on 30/07/2019 from http://www.nealelab.is/uk-biobank. From the list of all pheno-
types, we selected those corresponding to malignant neoplasms, which are identified by ICD10
codes C00-C97 (see http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41202), and
removed the benign neoplasms and in situ carcinoma/melanoma and the secondary neoplasms
(C77,C78,C79). With these parameters, we identified 38 different types of cancers.

LD-score data was downloaded from https://data.broadinstitute.org/alkesgroup/

LDSCORE/ on 15/03/2018-15/04/2018 and used Gencode version 31 available at https://

www.gencodegenes.org/). The Gene Ontology (GO) slim dataset was generated using the
MAP2SLIM utility of the OWL tools on 16/10/2019. We also report enrichment results for the
entire Gene Ontology dataset downloaded from the MSigDB,
(http://software.broadinstitute.org/gsea/msigdb). The Precision Oncology Knowledge
Base (OncoKB) dataset, alongside the MSK and Vogelstein data, were downloaded on
01/10/2018, while the Cancer Gene Census data was downloaded from https://cancer.

sanger.ac.uk/census on 17/07/2019. The DNA repair gene list has been downloaded from
https://www.mdanderson.org/documents/Labs/Wood-Laboratory/human-dna-repair-genes.

html on 25/02/2019. The PCAWG compendium of mutational driver elements was downloaded
on 24/04/2020 from https://dcc.icgc.org/pcawg/. All dates are reported as dd/mm/yyy.

1.3.2 Relationship between genome-wide significant SNPs and local heritability

We tested whether higher levels of heritability could be explained by the presence of genome-
wide significant SNPs (P < 5× 10−8) in or nearby protein-coding regions.

For each cancer, we identified loci harbouring at least 1 genome-wide significant SNP, and
denoted these as minSNPs. We found 119 minSNPs in total, with at least 1 minSNP in 18 of
the 38 cancers (Supplementary Table 5). This is a striking difference compared to the 1523
heritability loci found in total for all 38 malignancies; interestingly, our method was able to re-
cover 98 (82%) of the minSNSP suggesting that it can detect heritability genes regardless of
the association strength of their SNPs.

We then proceeded to analyse whether there is a correlation between minSNP p-values and
heritability estimates. Interestingly, while we found many minSNPs to be also heritability loci,
we do not observed a linear relationship between BAGHERA η estimates and GWAS p-values
(see Supplementary Figure 17 and 18). However, as expected, there is a correlation between
each gene average statistics and local heritability (see Supplementary Figure 17).

1.3.3 Comparison with self-reported tumors

The UK Biobank provides GWAS results for multiple malignancies classified by patient self-
reported cancer type at time of assessment. Here we show the results for this dataset using
summary statistics computed by B. Neale et al. We found only 11 datasets with χ̂2 > 1.01
compared to the 17 found using the histologically classified tumors (see Supplementary Table
4), along with higher prevalence for the latter (0.0029) compared to the average of self-reported
tumors (0.0023).
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We then proceeded with the analysis of the self-reported dataset, similarly to what shown
for the histologically characterized tumours. Breast and prostate cancer show high values
of heritability, with both breast and testicular cancer have more than 30% of their heritability
explained by heritability loci (see Supplementary Figure 15A). As expected, these datasets,
whose signal is lower compared to the histologically classified malignancies, have a higher
heritability enrichment, consistent with results on simulated data (Supplementary Figure 15B).
CHGs occurring in multiple malignancies are consistent both in number (see Supplementary
Figure 15C) and identity with those found in the 38 cancers identified using the histological
classification (Supplementary Figure 15D and 12D).

Overall, we find that quantitatively comparing the heritability loci results for self-reported and
histologically classified cancers might be difficult. We then considered the Jaccard similarity
coefficient computed between heritability genes for each pair of cancers (see Supplementary
Figure 14). Here we used the Gencode v27 annotation, which might have resulted in a slightly
different mapping of the genes; thus, for the Jaccard coefficient, we directly compared the
genes rather than loci. As expected, in some cases, there is consensus between same cancers,
although the great differences in signal and the different mapping might decrease the power of
detecting similarities, especially for tumours with fewer heritability loci.

Interestingly, when characterizing the CHGs for the self-reported cancer types, we find the
overall results to be highly consistent with those of the histologically characterized datasets (see
Supplementary Figure 16). We would also like to point out that 90% of the significant GO terms
in this analysis are also significant in the same analysis for the histologically characterized
cancers; moreover, we also found a significant enrichment for tumour suppressors genes over
oncogenes.
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2 Supplementary Figures
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Supplementary Figure 1: Performance on genome-wide heritability estimation for simu-
lated dense effect datasets. Genome-wide heritability estimates for dense effects. For each
value of h2, we plot the simulated heritability level, the genome-wide (gw) estimate, which is the
median of the posterior of genome-wide heritability term, and the gene-level estimate which is
the sum of all median gene heritability estimates (sum). For each parameter setting, we simu-
lated 5 datasets, where error bars represent the standard deviation of the estimates. Genotype
data has been simulated only for chromosome 1.
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Supplementary Figure 2: Performance on gene-level heritability estimation for simulated
datasets. A) Genome-wide heritability estimates for datasets with varying gene-level heritabil-
ity. For each value of h2, we plot the simulated heritability level, the genome-wide (gw) estimate,
which is the median of the prior heritability term, and the gene-level estimate which is the sum
of all median gene heritability estimates (sum). For each parameter setting, we have simu-
lated 5 datasets, error bars represent the standard deviation of the estimates across different
datasets. Genotype data has been simulated only for chromosome 1. B-C) Receiver Operator
Characteristic curves and Precision Recall curves for the performance of BAGHERA in dis-
covering significant loci for different levels of genome-wide heritability h2. For each parameter
setting, we simulated 5 datasets.
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0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

h2: 0.01, Significant = 0.010000 

1.1, AUC= 0.541 
5.0, AUC= 0.705 
10.0, AUC= 0.774 
30.0, AUC= 0.950 

0.0 0.2 0.4 0.6 0.8 1.0
FPR

TP
R

h2: 0.1, Significant = 0.010000 

1.1, AUC= 0.535 
5.0, AUC= 0.965 
10.0, AUC= 0.990 
30.0, AUC= 1.000 

0.0 0.2 0.4 0.6 0.8 1.0
FPR

TP
R

h2: 0.2, Significant = 0.010000 

1.1, AUC= 0.589 
5.0, AUC= 0.976 
10.0, AUC= 0.999 
30.0, AUC= 1.000 

Supplementary Figure 4: ROC curves for summary statistics simulations. Receiver Op-
erating Characteristic curve for data simulated from summary statistics. Fold changes,fc =
{1.1, 5, 10, 30}, are color-coded, while each column corresponds to different values of h2 =
{0.01, 0.1, 0.2}.
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Supplementary Figure 7: Comparison between BAGHERA and HESS local heritability es-
timates for breast cancer (C50). The first panel shows HESS and BAGHERA values of local
heritability ḧ2k. The second panel reports the values of ḧ2k, but it is limited the regions that are re-
ported as significant by BAGHERA and HESS. The last panel, instead, shows HESS estimates
rescaled to be comparable with BAGHERA, as ḧ2k/Mk ×M .
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Supplementary Figure 8: Comparison between BAGHERA and HESS local heritability es-
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Supplementary Figure 9: BAGHERA results - η distribution across 38 cancers in the UK
Biobank. For each dataset (x-axes), a violin plot shows the mass distribution of the indicator
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Supplementary Figure 12: Heritability loci across 38 cancers in the UK Biobank. A) For
each malignancy we report the observed heritability (h2SNP , left box), the percentage of h2SNP

explained by heritability loci (central barplot, dark blue is the percentage explained by HLs)
and the number of heritability loci (right barplot). B) Gene-level heritability density distribution
across heritability loci, expressed as fold-change with respect to the genome-wide estimate.
Highlighted are the top loci and the median fold-change across all cancers. C) Percentage of
cancer heritability loci associated with multiple cancers. Less than 13% of heritability loci are
common to multiple malignancies. D) Cancer heritability loci associated with multiple cancers.
We report the loci common to at least 3 malignancies sorted by name, for example we can
notice that CLPTM1L is common to 5 cancer types. Here the size of the dot is proportional to
the fold-change of the locus in the specific cancer.
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Supplementary Figure 13: Functional characterization of cancer heritability genes across
38 cancers in the UK Biobank. A) Gene Ontology enrichment analysis using Fisher’s ex-
act test. For each significant term, we report the odds-ratio (x-axis) and −log10(FDR) (color
gradients). B)Tumour suppressor and oncogene CHGs across cancers. For each cancer type
(y-axis), we report the number of genes (x-axis) reported as tumour suppressors (TSGs) and/or
oncogenes in OncoKB (colour codes, cancer genes are known to be drivers, but their specific
role is not reported). C) Enrichment of CHGs across cancer driver genes annotations; here we
report OncoKB (purple), COSMIC database (light blue), different cancer driver sets (dark blue)
and other sets (green), like DNA repair genes and known actionable targets. Stars indicate
statistical significance, with multiple terms having p < 10−4.
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Supplementary Figure 14: Jaccard similarity coefficient of heritability loci obtained from
the 38 ICD10-classified datasets and the 35 self-reported cancers in the UKBB. The
heatmap shows the Jaccard similarity coefficient between significant genes of the histologically
characterized dataset, y-axis, and the self-reported ones, x-axis, with darker colours corre-
sponding to higher similarity. In bold and with white stars we have highlighted high similarities
for the same tumour type, while with the dark stars we have highlighted the similarity between
different skin-cancer types.
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Supplementary Figure 15: Heritability loci across 35 self-reported cancers in the UK
Biobank A) For each malignancy, we report the observed heritability (h2SNP , left box), the
percentage of h2SNP explained by heritability loci (central barplot, dark blue is the percentage
explained by HLs) and the number of heritability loci (right barplot). B) Gene-level heritabil-
ity density distribution across heritability loci, expressed as fold-change with respect to the
genome-wide estimate. Highlighted are the top loci and the median fold-change across all
cancers. C) Percentage of cancer heritability loci associated with multiple cancers. More than
10% of loci are common to multiple malignancies. D) Cancer heritability loci associated with
multiple cancers. We report the HLs common to at least 3 cancers; here the size of the dot is
proportional to the heritability enrichment of the locus in the specific cancer.
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Supplementary Figure 16: Functional characterization of cancer heritability genes for the
35 self-reported cancers. A) Gene Ontology enrichment analysis using Fisher’s exact test.
For each significant term, we report the odds-ratio (x-axis) and −log10(FDR) (color gradients).
B)Tumour suppressor and oncogene CHGs across cancers. For each cancer type (y-axis), we
report the number of genes (x-axis) reported as tumour suppressors (TSGs) and/or oncogenes
in OncoKB (colour codes, cancer genes are known to be drivers, but their specific role is not
reported). C) Enrichment of CHGs across cancer driver genes annotations; here we report On-
coKB (purple), COSMIC database (light blue), different cancer driver sets (dark blue) and other
sets (green), like DNA repair genes and known actionable targets. Stars indicate statistical
significance, with multiple terms having P < 10−4.
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Supplementary Figure 17: Relationship between genome-wide significant SNPs and local
heritability across the 38 cancers in the UK Biobank. On the left panel, we show the cor-
relation between GWAS pvalues (x-axis, we consider only loci with p:< 10−5) and BAGHERA
η (x-axis; in the software implementation η is named P, and it is here transformed to 1 − η to
be comparable to pvalues). For each locus analysed by BAGHERA, we selected the smallest
p-value of its SNPs. Horizontal line is the GWAS significance threshold (p: 5 × 10−8), verti-
cal line is for η = 0.99. Size of the marker is proportional to the genome-wide h2SNP estimate
(which in the software implementation is denoted as mi median). It is worth noting that there is
no linear relation between BAGHERA η and GWAS pvalues. In some cases, see top left quad-
rant, there are locus harboring SNPs with very small p-values, that are not significant for the
heritability analysis. On the right panel, instead, we show the correlation between each locus
average χ2 and local heritability (y-axis, to make results from different cancer types comparable
we show the locus weight as wk = (h2k − h2)/h2). Significant loci are color coded in red. As
expected, there is correlation between the average value of the test statistics of a locus and its
local heritability.
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Supplementary Figure 18: Single malignancy genome-wide significant SNPs. For each
cancer type, color coded, we selected loci harbouring SNPs with p:< 10−5. On the x-axis, for
each malignancy, we sorted the loci by their η, from the largest to the smallest. Loci that are
significant for BAGHERA are dark stars, while those that are not significant are represented
with dots. Horizontal lines are different p-value significance thresholds. This figure details the
results in Supplementary Figure 17

.
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Genes chrom SNPs cancers Cancer types

CLPTM1L 5 27 5 melanoma skin, prostate, other skin,
bronchus lung, bladder

MUC19 12 183 5 thyroid, myeloma, breast, anus, rectosigmoid junction
MTRNR2L5;
PCDH15 10 978 4 lymphoid leukaemia, mesothelioma, eye adnexa, breast

AUTS2 7 489 4 oesophagus, lymphoid leukaemia,
other nonhodgkins lymphoma, pancreas

DPYD 1 574 4 liver, ovary, tonsil, larynx

THADA 2 165 4 melanoma skin, prostate,
diffuse nonhodgkins lymphoma, bladder

KCNS2; STK3 8 188 4 melanoma skin, small intestine, no site, anus
CDH13 16 1502 3 corpus uteri, melanoma skin, rectosigmoid junction
PACRG; PRKN 6 1353 3 thyroid, oesophagus, pancreas
NIPAL3;
STPG1;
GRHL3

1 136 3 melanoma skin, prostate, other connective soft tissue

CLEC16A 16 170 3 other nonhodgkins lymphoma, ovary,
diffuse nonhodgkins lymphoma

MAST4 5 383 3 peritoneum, other skin, breast
DLG2 11 1014 3 oesophagus, bronchus lung, bladder
APAF1;
ANKS1B;
FAM71C

12 582 3 testis, oesophagus, stomach

SMAP1; B3GAT2 6 162 3 rectum, other connective soft tissue, colon

AGBL1 15 698 3 testis, diffuse nonhodgkins lymphoma,
follicular nonhodgkins lymphoma

AGBL4;
BEND5;
AL645730.2

1 475 3 ovary, larynx, breast

TP53INP2;
PIGU; NCOA6 20 106 3 melanoma skin, other skin, breast

GRM5 11 313 3 melanoma skin, other skin, colon
ZFHX4 8 116 3 melanoma skin, prostate, other skin
RERE 1 141 3 kidney, other skin, diffuse nonhodgkins lymphoma
CDH4 20 540 3 testis, prostate, other skin
VGLL4; ATG7 3 245 3 other skin, eye adnexa, other tongue
NYAP2 2 154 3 other skin, other connective soft tissue, breast
MTAP; AL359922.1;
CDKN2B; CDKN2A 9 162 3 melanoma skin, other skin, brain

BACH2 6 215 3 other skin, other connective soft tissue, breast
PREX1 20 190 3 testis, tonsil, colon
GALK2; FGF7;
FAM227B; COPS2 15 157 3 ovary, follicular nonhodgkins lymphoma, breast

SEMA3A 7 287 3 peritoneum, other skin, ovary
ZNF385D 3 862 3 testis, prostate, follicular nonhodgkins lymphoma
POU5F1B 8 137 3 prostate, breast, colon

Supplementary Table 1: Heritability loci common to more than 2 malignancies among the
38 cancers in the UK Biobank. For each locus, we report the gene names, the chromo-
some, the number of SNPs in the locus, and the cancers for which the locus shows significant
heritability enrichment.
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GO Term GO id CHGs TP OR p-value FDR
cell morphogenesis GO:0000902 822 140 1.51249 0.00002 0.00145
cell-cell signaling GO:0007267 1364 215 1.38895 0.00003 0.00145
anatomical structure development GO:0048856 4094 576 1.25771 0.00002 0.00145
kinase activity GO:0016301 1291 203 1.38162 0.00006 0.00214
cytoskeleton organization GO:0007010 1260 194 1.34248 0.00029 0.00703
biological process GO:0008150 6375 848 1.19188 0.00030 0.00703
ion binding GO:0043167 5328 716 1.18984 0.00045 0.00900
cell differentiation GO:0030154 3263 454 1.21364 0.00058 0.01009
plasma membrane GO:0005886 4994 672 1.18500 0.00069 0.01068
response to stress GO:0006950 2975 412 1.19890 0.00164 0.02240
cytoskeleton GO:0005856 1597 232 1.25172 0.00210 0.02240
cellular protein modification process GO:0006464 3321 455 1.18618 0.00205 0.02240
enzyme binding GO:0019899 2076 295 1.22522 0.00199 0.02240
DNA metabolic process GO:0006259 789 123 1.34854 0.00244 0.02257
cytoskeletal protein binding GO:0008092 817 127 1.34455 0.00231 0.02257
cytoplasm GO:0005737 4713 628 1.15849 0.00318 0.02763
cell motility GO:0048870 1274 186 1.25239 0.00470 0.03845
cellular component GO:0005575 5314 699 1.14209 0.00581 0.04488
growth GO:0040007 797 120 1.29075 0.00852 0.06231
signal transduction GO:0007165 5214 683 1.13158 0.00974 0.06681
autophagy GO:0006914 379 62 1.41713 0.01009 0.06681
cell GO:0005623 2157 297 1.17421 0.01101 0.06958
cell adhesion GO:0007155 1149 165 1.22322 0.01378 0.07801
peptidase activity GO:0008233 1118 161 1.22701 0.01351 0.07801
embryo development GO:0009790 818 121 1.26283 0.01409 0.07801
cell junction organization GO:0034330 245 42 1.49541 0.01459 0.07801
cellular component assembly GO:0022607 2556 346 1.15242 0.01559 0.08027
plasma membrane organization GO:0007009 172 31 1.58688 0.01700 0.08150
reproduction GO:0000003 1133 162 1.21614 0.01689 0.08150

Supplementary Table 2: Statistically significant Gene Ontology terms for the 38 cancers
in the UK Biobank. We report the gene ontology terms significantly associated with cancer
heritability genes of all 38 cancers in the UKBB, at 10%FDR. For each term, we report the GO
id term, the number of annotated CHGs, the number of CHGs shared with the GO term, the
odds ratio, the p-value from the Fisher’s Exact test and the adjusted p-value after applying the
Benjamini-Hochberg procedure.
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Geneset CHGs OR p-value
actionable 12 2.95704402853006 0.003010513617533
OncoKB Annotated 82 1.70182693656355 3.45E-05
OncoKB Oncogene 30 2.03015313527443 0.000989619358728
OncoKB TSG 41 2.32559883961873 1.10E-05
MSK-IMPACT 74 1.69855042892001 8.20E-05
MSK-HEME 72 2.00040589657017 1.04E-06
Foundation One 60 1.93523581681476 1.70E-05
Foundation One Heme 93 1.71410442349529 8.99E-06
Vogelstein 25 2.26853809360218 0.000688378926034
Sanger CGC 105 1.90314876984706 4.42E-08
cgc hallmark 52 1.99517925729025 2.98E-05
cgc somatic 114 1.78333561882259 2.14E-07
cgc germline 19 1.7869406867846 0.021626151797484
cgc epithelial 68 1.96978537106247 3.10E-06
cgc other 18 2.11038080867497 0.006672381597831
cgc mesenchimal 24 2.45812653699978 0.000340751626412
cgc liquid 50 1.64904739495146 0.001689100231574
dnarepair 23 1.41604940491173 0.085540295201593
pcagw compendium 111 1.58551000032207 2.59E-05

Supplementary Table 3: Cancer genesets enrichment analysis for the 38 cancers in the
UK Biobank. Results of the enrichments analysis between the Curated cancer dataset terms
and the heritability genes of all datasets.
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code Malignancy cases prevalence χ̂2 h2
SNP h2

SNPL
HL

1002 breast cancer 7480 0.02219 1.08192 0.01245 0.09668 246
1061 basal cell carcinoma 3156 0.00936 1.06533 0.01250 0.18314 158
1044 prostate cancer 2495 0.00740 1.05405 0.00939 0.16460 136
1045 testicular cancer 614 0.00182 1.03105 0.00567 0.30420 145
1059 malignant melanoma 2677 0.00794 1.02615 0.00622 0.10342 49
1041 cervical cancer 1347 0.00400 1.02078 0.00590 0.16776 21
1022 colon cancer/sigmoid cancer 1134 0.00336 1.01659 0.00196 0.06403 9
1040 uterine/endometrial cancer 843 0.00250 1.01499 0.00148 0.06127 17
1062 squamous cell carcinoma 404 0.00120 1.01276 0.00225 0.17012 21
1065 thyroid cancer 317 0.00094 1.01245 0.00195 0.18077 26
1023 rectal cancer 253 0.00075 1.01187 0.00213 0.23923 13
1034 kidney/renal cell cancer 436 0.00129 1.00968 0.00156 0.11121 12
1035 bladder cancer 799 0.00237 1.00685 0.00091 0.03954 16
1003 skin cancer 1046 0.00310 1.00679 0.00226 0.07854 13
1019 small intestine/small bowel cancer 156 0.00046 1.00618 0.00076 0.12919 19
1030 eye and/or adnexal cancer 102 0.00030 1.00408 0.00184 0.44827 18

1052 hodgkins lymphoma /
hodgkins disease 331 0.00098 1.00324 0.00067 0.06010 14

1047 lymphoma 92 0.00027 1.00229 0.00101 0.26830 11
1063 primary bone cancer 105 0.00031 1.00193 0.00090 0.21425 13
1053 non-hodgkins lymphoma 631 0.00187 1.00082 0.00043 0.02267 2
1060 non-melanoma skin cancer 507 0.00150 1.00076 0.00109 0.06863 21
1018 stomach cancer 121 0.00036 0.99947 0.00079 0.16616 11
1068 sarcoma/fibrosarcoma 181 0.00054 0.99930 0.00126 0.18758 4
1011 tongue cancer 115 0.00034 0.99905 0.00181 0.39809 21
1006 larynx/throat cancer 250 0.00074 0.99786 0.00052 0.05865 9
1004 cancer of lip/mouth/pharynx/oral cavity 78 0.00023 0.99756 0.00060 0.18505 5
1039 ovarian cancer 579 0.00172 0.99745 0.00069 0.03903 10
1056 chronic myeloid 85 0.00025 0.99734 0.00112 0.32044 11

1032 brain cancer /
primary malignant brain tumour 155 0.00046 0.99648 0.00177 0.30057 12

1048 leukaemia 158 0.00047 0.99611 0.00045 0.07506 9
1024 liver/hepatocellular cancer 125 0.00037 0.99530 0.00168 0.34389 11
1020 large bowel cancer/colorectal cancer 475 0.00141 0.99524 0.00077 0.05125 9
1001 lung cancer 190 0.00056 0.99519 0.00091 0.13020 11
1050 multiple myeloma 115 0.00034 0.99491 0.00083 0.18195 7

Supplementary Table 4: Self reported cancers in the UK Biobank. We report summary
informations of of the 35 self-reported cancer types analysed in the first round of the GWAS
analysis on the UK Biobank. For each cancer, we report the number of cases out of the 337, 159
total samples, the prevalence in the cohort, the average χ2 of the SNPs considered in the
GWAS analysis (χ̂2), the genome-wide estimates of heritability, both on the observed (h2SNP )
and the liability (h2SNPL

) scale, and the number of heritability loci (HL) reported by BAGHERA
as significant for η > 0.99. Both prevalence and χ̂2 are lower than the data used in the main
study; in particular, there are only 11 tumours with χ̂2 > 1.01.
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ICD10 Cancer Significant SNPs minSNPs minSNP ∩ HL HL

C44 Other malignant neoplasms of skin 580 58 55 422
C50 Malignant neoplasm of breast 178 10 9 267
C61 Malignant neoplasm of prostate 203 20 20 271
C18 Malignant neoplasm of colon 4 1 1 33
C43 Malignant melanoma of skin 42 14 9 52
C15 Malignant neoplasm of oesophagus 0 0 0 24
C67 Malignant neoplasm of bladder 11 2 1 39
C34 Malignant neoplasm of bronchus and lung 0 0 0 17
C20 Malignant neoplasm of rectum 0 0 0 15
C62 Malignant neoplasm of testis 19 2 1 29
C71 Malignant neoplasm of brain 0 0 0 19
C45 Mesothelioma 1 1 0 5
C91 Lymphoid leukaemia 0 0 0 11

C02 Malignant neoplasm of other and
unspecified parts of tongue 0 0 0 23

C16 Malignant neoplasm of stomach 0 0 0 12
C83 Diffuse non-Hodgkin’s lymphoma 1 0 0 14
C82 Follicular non-Hodgkin’s lymphoma 0 0 0 21

C90 Multiple myeloma and
malignant plasma cell neoplasms 0 0 0 15

C56 Malignant neoplasm of ovary 0 0 0 13
C54 Malignant neoplasm of corpus uteri 0 0 0 14

C48 Malignant neoplasm of
retroperitoneum and peritoneum 0 0 0 5

C64 Malignant neoplasm of kidney
except renal pelvis 0 0 0 10

C01 Malignant neoplasm of base of tongue 1 1 0 10
C73 Malignant neoplasm of thyroid gland 23 2 2 13

C49 Malignant neoplasm of
other connective and soft tissue 1 1 0 28

C80 Malignant neoplasm
without specification of site 1 1 0 14

C53 Malignant neoplasm of cervix uteri 1 1 0 14

C22 Malignant neoplasm of liver
and intrahepatic bile ducts 5 1 0 7

C21 Malignant neoplasm of anus and anal canal 1 1 0 23

C85 Other and unspecified types of
non-Hodgkin’s lymphoma 0 0 0 9

C09 Malignant neoplasm of tonsil 1 1 0 5
C92 Myeloid leukaemia 0 0 0 9
C17 Malignant neoplasm of small intestine 0 0 0 12
C19 Malignant neoplasm of rectosigmoid junction 1 1 0 10
C25 Malignant neoplasm of pancreas 0 0 0 12
C81 Hodgkin’s disease 6 1 0 5
C69 Malignant neoplasm of eye and adnexa 0 0 0 14
C32 Malignant neoplasm of larynx 1 0 0 7

Supplementary Table 5: Comparison between GWAS results and gene-level heritability
analysis for the 38 cancers in the UK Biobank. For each cancer type, we report the number
of significant SNPs found by the GWAS analysis, the number of genes that harbor at least a
genome-wide significant SNP (minSNSP), the number of heritability loci (HL), and the overlap
between minSNP and HL.
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Genes chrom SNPs cancers Cancer types

CLPTM1L 5 27 4
prostate, melanoma skin,
bladder,bronchus lung

THADA 2 165 4
prostate, melanoma skin,bladder,
diffuse nonhodgkins lymphoma

APAF1;
ANKS1B;
FAM71C

12 582 3 oesophagus, testis, stomach

MTRNR2L5;
PCDH15

10 978 3 breast, mesothelioma, lymphoid leukaemia

AGBL1 15 698 3
testis, diffuse nonhodgkins lymphoma,
follicular nonhodgkins lymphoma

POU5F1B 8 137 3 breast, prostate, colon

ZNF385D 3 862 3
prostate, testis,
follicular nonhodgkins lymphoma

DLG2 11 1014 3 oesophagus, bladder, bronchus lung

Supplementary Table 6: Heritability loci common to more than 2 malignancies among the
16 cancers in the UK Biobank. The table refers to the top hits of Figure 3D. For each locus,
we report the gene names, the chromosome, the number of SNPs, and the cancers for which
the locus shows significant heritability enrichment.
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Geneset OR CHG in dataset p-value
actionable 2.63453493776791 7 0.026951610993734
OncoKB TSG 2.4758427927671 27 7.90E-05
cgc mesenchimal 2.24609098939929 14 0.007835265509946
MSK-HEME 2.19714313105167 48 3.93E-06
cgc other 2.07244104690334 11 0.027306118314416
cgc hallmark 2.06286703907705 33 0.00030018959537
Foundation One 1.93993932601498 37 0.000393887476418
Foundation One Heme 1.83497871569604 60 3.91E-05
OncoKB Oncogene 1.83348095659876 17 0.019840274395826
Vogelstein 1.83053839364519 13 0.038349307393117
OncoKB Annotated 1.78464447477968 52 0.000213156056084
MSK-IMPACT 1.7840487630967 47 0.000407877043307
cgc epithelial 1.75509927797834 38 0.001711381100092
Sanger CGC 1.74637430939227 60 0.000130077696757
cgc somatic 1.70276736998878 67 0.000110483300951
pcagw compendium 1.55039109506619 66 0.001117467439307
dnarepair 1.54926413964234 15 0.080471017287826
cgc germline 1.50414250207125 10 0.151946556078459
cgc liquid 1.49944841979726 28 0.033703719324945

Supplementary Table 7: Cancer geneset enrichment analysis for the 16 cancers in the UK
Biobank. Results of the enrichment analysis between the curated cancer genesets and the
heritability genes of the 16 datasets with sufficient power in the UK Biobank. The table refers to
the results in Figure 4 in the main text.
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gene PS SG EIR CRI TPI IM A GIM EPCD CCE tsg og fusion
XPO1 P P 0 1 0
TP63 P P P 1 1 0

SMAD2 P P S S 1 0 0
ROS1 P 0 1 1

RAP1GDS1 P P 0 1 1
RABEP1 P 0 0 1
PPARG P P P 1 0 0
POT1 S 0 0

PIK3R1 P S S 1 0 0
PBX1 P P P 0 1 1

PBRM1 P P S S S S P 1 0 0
NT5C2 P P 0 1 0
NCOR2 P S P,S 1 0 0
NAB2 S 1 0 1
MTOR P P P P P 0 1 0

MLLT10 P 0 1 1
LRP1B P S 1 0 0
JAK2 P P,S P P 0 0 0

FOXA1 P S 0 1 0
FGFR2 P P 1 1 0
FAT4 P S 1 0 0
ESR1 P P P P,S 1 1 1

ERBB4 P P P,S 1 1 0
EBF1 P 1 0 1

CTNNB1 P P P P P P S P P 0 1 1
CLIP1 0 0 1
CIITA S 1 0 1

CDKN2A P S S S 1 0 0
CDH11 S S 1 0 0
CCDC6 P S S P 1 0 1

CBFA2T3 P P 1 0 1
ALK P P P,S 0 1 1

LATS2 P P,S S S 1 0 0

Supplementary Table 8: Cancer heritability genes associated with the hallmark of cancers
across 16 cancers in the UK Biobank. Each column corresponds to one of the hallmarks.
P stands for promotes, S stands for suppresses. We also report whether the gene is known
to be a tumor suppressor, TSG, and oncogene or fusion gene. This table corresponds to the
results in Figure 4 in the main text. PS: proliferative signalling, SG: suppression of growth, EIR:
escaping immunic response to cancer, CRI: cell replicative immortality, TPI: tumour promoting
inflammation, IM: invasion and metastasis, A: angiogenesis, GIM: genome instability and muta-
tions, EPCD: escaping programmed cell death, CCE: change of cellular energetics, tsg: tumor
suppressor gene, og: oncogene.
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