
Supplemental Methods on Data Analysis 
 
Project Achilles RNAi and CRISPR-Cas9 Screens 

We analyzed a previously published genome-scale RNAi screen in 501 cancer 

cell lines, which included 10 MRT lines (1). In brief, each cell line was screened with one 

of two genome-scale shRNA libraries of ~55,000 or ~100,000 hairpins. The libraries 

were transduced into each cell line at a low multiplicity of infection, and cells passaged 

for 16 doublings or 40 days, whichever came first. Depletion or enrichment of each 

shRNA was assessed through high-throughput sequencing of the final cell populations in 

comparison with the starting shRNA plasmid library. Hairpin-level data was collapsed to 

gene-level dependency scores using the DEMETER algorithm, which computationally 

corrects for seed effects and outlier shRNAs. Z-scores were then calculated over the 

population of all cell lines for their comparative depletion or enrichment for each gene.  

We also analyzed an updated version of the Broad Institute’s GeCKOv2 library 

screen of 43 cancer cell lines, which included 8 MRT lines (2, 3). This library contained 

approximately 123,411 sgRNAs with an average of 6 sgRNAs per gene and 1,000 

negative control sgRNAs. Briefly, cell lines were transduced with Cas9 using a lentiviral 

system and assayed for sufficient Cas9 activity (2). The pooled GeCKOv2 CRISPR 

library was then transduced into a population of cells and cultured for approximately 21 

days. Barcodes for each sgRNA were then amplified and sequenced to determine relative 

amounts in the starting and end populations. Sequencing was performed in duplicate. 

Poor replicate reproducibility or sgRNAs not well represented in the initial pool were 

removed from the analysis. The CERES algorithm (4) was then used to collapse the 

sgRNA level data into gene scores. Scores for each cell line were then scaled such that 



the mean of negative control sgRNAs was 0 and the mean of a subset of positive control 

genes in required housekeeping pathways was -1.  

For both the RNAi and CRISPR-Cas9 datasets, genetic dependencies that are 

enriched in MRT cell lines were identified using linear-model analysis from the limma R 

package (5) by performing a two-tailed t-test for the difference in distribution of gene 

dependency scores in MRT cell lines compared to all other cell lines screened. Statistical 

significance was calculated as a Q value derived from the P value corrected for multiple 

hypothesis testing using the Benjamini & Hochberg method (6). When comparing 

individual genes when divided by p53 status, one-way ANOVA with Holm-Sidak’s 

multiple comparisons correction was performed using GraphPad Prism (La Jolla, CA). 

p53 Status Annotations 

We adapted the functional and genetic TP53 status annotations from (7). Briefly, 

we defined the functional and genetic TP53 status of cell lines using the Cancer Cell Line 

Encyclopedia (CCLE - https://portals.broadinstitute.org/ccle/) (8), Genomics of Drug 

Sensitivity in Cancer (GDSC - http://www.cancerrxgene.org) (9), and The Cancer 

Genome Atlas (TCGA accessed via cBioPortal - http://www.cbioportal.org) (10) 

databases. To determine the functional p53 status of each cell line, we considered p53 

target gene expression (11) computed using data from the CCLE. Cell lines were 

included in the “p53 functional” class if their functional score calculated as [Target 

Genes CCLE Z-score] was greater than 0, and included in the “p53 non-functional” class 

if the functional score was less than 0. “p53 functional” cell lines were ultimately 

determined to be “p53 wild-type (WT)” if no genetic TP53 alterations were found by 

CCLE, GDSC, or TCGA (n = 252), and discarded as discordant if any TP53 alterations 



were found (n = 82). “p53 non-functional” cell lines were determined to be “p53 mutant” 

if they harbored any genetic TP53 alteration (n = 516) and discarded as discordant if no 

TP53 alterations were found (n = 116). All scores and classifications are detailed in 

Supplemental Table S2. 

RNA-sequencing 

Deconvoluted data sets were aligned to human genome hg19 using STAR (12) 

with ENCODE standard options (--outFilterType BySJout, --outFilterMultimapNmax 20, 

--alignSJoverhangMin 8, --alignSJDBoverhangMin 1, --outFilterMismatchNmax 999, --

outFilterMismatchNoverLmax 0.04, --alignIntronMin 20, --alignIntronMax 1000000, --

alignMatesGapMax 1000000). RSEM (13) with the options of --bam --estimate-rspd  --

calc-ci --no-bam-output --seed 12345 --paired-end was used to quantify gene expression. 

A hierarchical clustering method was performed on the read counts of all genes across all 

samples, which discovered the idasanutlin, replicate 3 sample as an outlier. Differential 

expression analysis between the remaining samples was performed using DESeq2 (14).  

Primary Tumor Expression Analysis 

TARGET MRT and paired normal kidney samples (dbGaP phs000218.v19.p7) 

were aligned or re-aligned with STAR and transcript quantification performed with 

RSEM to generate TPM expression per gene. Expression values were log2 transformed 

and floored at -3. For the PANCAN dataset, samples annotated as normal, cell line, or 

xenograft were excluded.  

The 13-gene expression signature for predicting sensitivity to MDM2 inhibition 

was adapted from Jeay et al	(11). The genes included in the analysis were AEN, BAX, 

CCNG1, CDKN1A, DDB2, FDXR, MDM2, RPS27L, RRM2B, SESN1, TNFRSF10B, 



XPC, and ZMAT3. For each gene, z-scores were calculated based on the TPM expression 

values for all samples used in our analysis (MRT, normal kidney, and other pediatric 

cancers). Then, the sum of the 13 z-scores was calculated to achieve an “MDM2-

sensitivity combined z-score” for each sample. Higher values predict a greater sensitivity 

to MDM2 inhibition. Finally, we compared MRT samples with their normal kidney pairs 

using a two-sided paired t-test, all MRT samples to all normal kidney samples using a 

two-sided unpaired t-test, and all MRT samples to all other pediatric cancer samples 

using a two-sided unpaired t-test, all in GraphPad Prism. 

	

References 
 

1. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et 

al. Defining a Cancer Dependency Map. Cell. 2017;170(3):564-76 e16. doi: 

10.1016/j.cell.2017.06.010. PubMed PMID: 28753430. 

2. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for 

CRISPR screening. Nature methods. 2014;11(8):783-4. doi: 10.1038/nmeth.3047. 

PubMed PMID: 25075903; PubMed Central PMCID: PMC4486245. 

3. Aguirre AJ, Meyers RM, Weir BA, Vazquez F, Zhang CZ, Ben-David U, et al. 

Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 

Targeting. Cancer discovery. 2016;6(8):914-29. doi: 10.1158/2159-8290.CD-16-0154. 

PubMed PMID: 27260156; PubMed Central PMCID: PMC4972686. 

4. Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, et al. 

Computational correction of copy number effect improves specificity of CRISPR-Cas9 



essentiality screens in cancer cells. Nature genetics. 2017;49(12):1779-84. doi: 

10.1038/ng.3984. PubMed PMID: 29083409; PubMed Central PMCID: PMC5709193. 

5. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers 

differential expression analyses for RNA-sequencing and microarray studies. Nucleic 

acids research. 2015;43(7):e47. doi: 10.1093/nar/gkv007. PubMed PMID: 25605792; 

PubMed Central PMCID: PMC4402510. 

6. Benjamini YH, Y. Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. J R Stat Soc Series B Stat Methodol. 

1995;57(1):289-300. 

7. Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, et al. 

Mutational processes shape the landscape of TP53 mutations in human cancer. Nature 

genetics. 2018. doi: 10.1038/s41588-018-0204-y. PubMed PMID: 30224644. 

8. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. 

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug 

sensitivity. Nature. 2012;483(7391):603-7. doi: 10.1038/nature11003. PubMed PMID: 

22460905; PubMed Central PMCID: PMC3320027. 

9. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, et al. 

Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 

2012;483(7391):570-5. doi: 10.1038/nature11005. PubMed PMID: 22460902; PubMed 

Central PMCID: PMC3349233. 

10. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative 

analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science 



signaling. 2013;6(269):pl1. doi: 10.1126/scisignal.2004088. PubMed PMID: 23550210; 

PubMed Central PMCID: PMC4160307. 

11. Jeay S, Gaulis S, Ferretti S, Bitter H, Ito M, Valat T, et al. A distinct p53 target 

gene set predicts for response to the selective p53-HDM2 inhibitor NVP-CGM097. eLife. 

2015;4. doi: 10.7554/eLife.06498. PubMed PMID: 25965177; PubMed Central PMCID: 

PMC4468608. 

12. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: 

ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. doi: 

10.1093/bioinformatics/bts635. PubMed PMID: 23104886; PubMed Central PMCID: 

PMC3530905. 

13. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data 

with or without a reference genome. BMC bioinformatics. 2011;12:323. doi: 

10.1186/1471-2105-12-323. PubMed PMID: 21816040; PubMed Central PMCID: 

PMC3163565. 

14. Love MI, Huber W, Anders S. Moderated estimation of fold change and 

dispersion for RNA-seq data with DESeq2. Genome biology. 2014;15(12):550. doi: 

10.1186/s13059-014-0550-8. PubMed PMID: 25516281; PubMed Central PMCID: 

PMC4302049. 

	


