

Figure S1, related to Figure 1

TAP-dependent peptide translocation in the presence of a high-affinity competitor peptide and activity measurements of recombinant mouse ERAP1 (rmERAP1).

- (A) TAP transport was analyzed with 50 μ M of each peptide -/+ 50 μ M high-affinity competitor peptide (R9) and peptide translocation was calculated. C4: high-affinity peptide devoid of a N-core glycosylation site and labelled with fluorescein, E5: peptide not binding to TAP including a N-core glycosylation site and labelled with fluorescein, NST: reporter peptide including a N-core glycosylation site and labelled with fluorescein. The experimental threshold (red dotted line) was set for E5+ATP (no TAP-binding).
- (B) Activity of rmERAP1 was measured by its ability to cleave the fluorogenic peptide substrate H-Leu-AMC. 6 ng rmERAP were incubated with 100 μ M H-Leu-AMC at 37°C. The released AMC was measured by a plate reader at excitation/emission wavelengths of 380/460 nm at the indicated time points.
- (C) TAP transport was analyzed with 50 μ M of each peptide and -/+ 50 μ M high-affinity competitor peptide (R9) and peptide translocation was calculated. C4: high-affinity peptide devoid of a N-core glycosylation site and labelled with fluorescein, E5: peptide not binding to TAP including a N-core glycosylation site and labelled with fluorescein, NST: reporter peptide including a N-core glycosylation site and labelled with fluorescein. The experimental threshold (red dotted line) was set for E5+ATP (no TAP-binding).
- (A-C) All data are represented as mean ± SD, (A and C) two-way ANOVA.

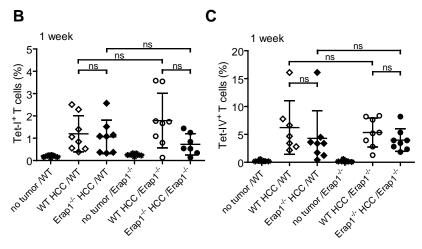


Figure S2

WT and *Erap1*-/- HCC are rejected in immune-competent WT and *Erap1*-/- recipients due to priming of TAg-I-specific (Tet-I⁺) and TAg-IV-specific (Tet-IV⁺) CD8⁺ T cells.

- (A) 1 x 10 6 WT or $Erap1^{-/-}$ HCC cells were injected s.c. into immune-competent WT (C57BL/6) and $Erap1^{-/-}$ recipients (control $Rag^{-/-}$ recipients) and the tumor volume was monitored. Shown is a single experiment . (B) 1 x 10 6 WT or $Erap1^{-/-}$ HCC cells were injected s.c. into immune-competent WT (C57BL/6) and $Erap1^{-/-}$ recipients and the percentage of Tet-I $^+$ CD8 $^+$ T cells among polyclonal CD8 $^+$ T $_E$ cells in peripheral blood was determined one week post ATT.
- (C) The experiment was conducted as in (B), and the percentage of Tet-IV⁺ CD8⁺ T cells was determined one week post ATT.
- (B and C) Shown is a single experiment, all data are represented as mean ± SD, Kruskal-Wallis test.

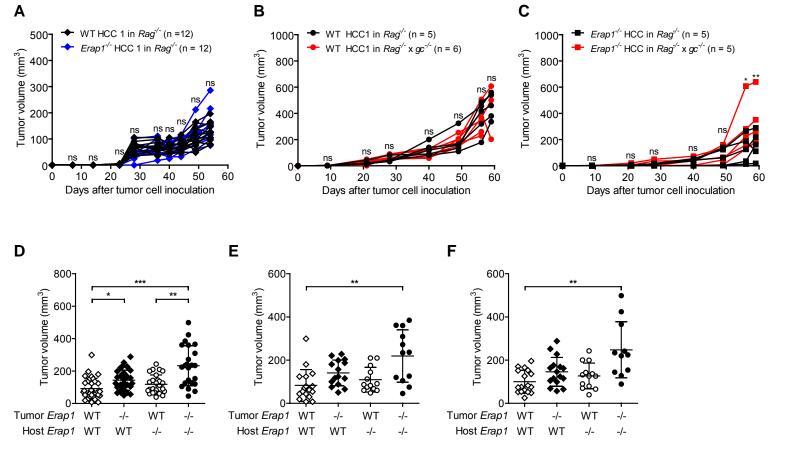


Figure S3, related to Figures 4 and 5

Role of NK cells in ERAP1-dependent tumor growth in H2b immune-deficient (Rag^{-/-}) recipients.

- (A) WT and *Erap1-/-* HCC was grown in *Rag-/-* recipients and the tumor volume was monitored. Shown is one of four representative experiments with similar results, two-way ANOVA.
- (B) WT HCC was grown in NK cell-competent $Rag^{-/-}$ recipients and NK cell-deficient $Rag^{-/-}$ x $gc^{-/-}$ recipients and the tumor volume was monitored.
- (C) $Erap1^{-/-}$ HCC was grown in NK cell-competent $Rag^{-/-}$ recipients and NK cell-deficient $Rag^{-/-}$ x $gc^{-/-}$ recipients and the tumor volume was monitored.
- (B and C) Data of a single experiment are shown, two-way ANOVA.
- (D) Tumor size at the day of ATT shown for all $Rag^{-/-}$ H2^b recipients (see Figure 4 and Table S3). WT \rightarrow WT n = 34, $Erap1^{-/-}\rightarrow$ WT n = 31, WT \rightarrow Erap1^{-/-} \rightarrow Erap1^{-/-}
- (E) Tumor volume of TCR-I T cell-treated H2^b $Rag^{-/-}$ recipients (see Figure 4C and Table S3B) at the day of ATT. WT \rightarrow WT n = 17, $Erap1^{-/-}\rightarrow$ WT n = 15, WT \rightarrow Erap1 $^{-/-}$ n = 13, $Erap1^{-/-}\rightarrow$ Erap1 $^{-/-}$ n = 12.
- (F) Tumor volume of TCR-IV T cell-treated H2^b $Rag^{-/-}$ recipients (see Figure 4D and Table S3C) at the day of ATT. WT \rightarrow WT n = 17, $Erap1^{-/-}\rightarrow$ WT n = 16, WT \rightarrow Erap1 $^{-/-}$ n = 13, $Erap1^{-/-}\rightarrow$ Erap1 $^{-/-}$ n = 11.
- (D-F) Data of n = 4-5 experiments are represented as mean \pm SD, Kruskal-Wallis test, *p < 0.05, **p < 0.01, ***p < 0.001.

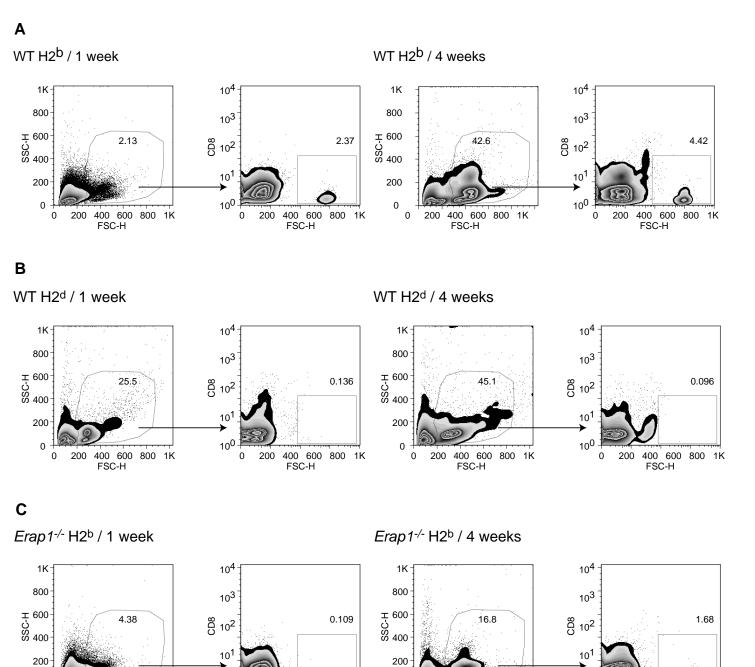


Figure S4, related to Figure 5

200 400 600 800 1K

FSC-H

10⁰

0

200

Gating strategy.

0

Ó

White blood cells were gated on live cells and CD8⁺ T cells, numbers are % gated cells exemplarily shown for (A) WT x $Rag^{-/-}$ recipients (WT H2^b), (B) SCID recipients (WT H2^d), and (C) $Erap^{-/-}$ x $Rag^{-/-}$ recipients ($Erap^{-/-}$ H2^b) 1 week and 4 weeks after ATT.

400 600 800

0

0 200

400 600 800 1K

FSC-H

10⁰

0 200

400 600 800 1K

FSC-H

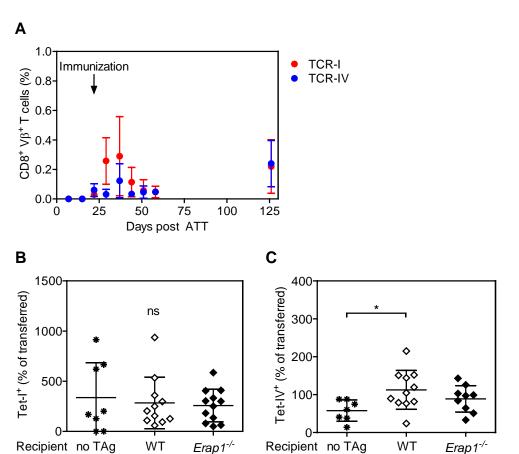
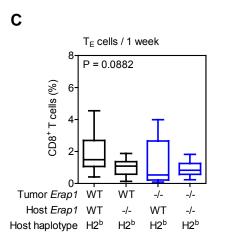
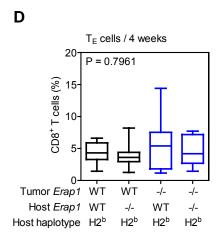


Figure S5, related to Figure 5


Antigen-dependent expansion of TCR-I and TCR-IV T cells.


- (A) 1 x 10⁶ TCR-I T cells and 1 x 10⁶ TCR-IV T cells were co-tranferred into immune-deficient Rag^{-/-} mice (n = 3 mice per group). % CD8+ Vß7+ TCR-I T cells and CD8+ Vß9+ TCR-IV T cells were measured in at different time points after ATT in peripheral blood. Mice were immunized with irradiated TAg+ 16.113 tumor cells on day 22 post ATT. Data are represented as mean ± SD.
- (B) TCR-I (Tet-I⁺) CD8⁺ cells among polyclonal CD8⁺ T_E cells in peripheral blood on day 7 post ATT. No Tag n = 8, WT n = 11, *Erap1*^{-/-} n = 12 mice.

 (C) TCR-IV (Tet-IV⁺) CD8⁺ cells among polyclonal CD8⁺ T_E cells in peripheral blood on day 7 post ATT. No Tag n = 7, WT n = 11, *Erap1*^{-/-} n = 9 mice.
- (B, C) Percentage was calculated according to % of Tet-I+ (1.74) and Tet-IV+ (17.5) CD8+ T cells among 1 x 106 polyclonal CD8+ T_F cells transferred on day 0. Data are represented as mean ± SD, Kruskal-Wallis test, *p < 0.05.

^				
Tumor Erap1	Host Erap1	Host haplo- type	HCC pair 1	HCC pair 2
WT	WT	H2 ^b	100	80.0
WT	-/-	H2 ^b	66.7	20.0
-/-	WT	H2 ^b	0.0	0.0
-/-	-/-	H2 ^b	0.0	0.0
0%	F	Rejection		

D				
Tumor <i>Erap1</i>	WT	WT	Erap1 ^{-/-}	Erap1 ^{-/-}
Host Erap1	WT	Erap1 ^{-/-}	WT	Erap1 ^{-/-}
Host haplotype	H2 ^b	H2 ^b	H2 ^b	H2 ^b
HCC pair 1	6/6 (100)	2/3 (66.7)	0/5 (0.0)	0/3 (0.0)
HCC pair 2	8/10 (80.0)	2/10 (20.0)	0/4 (0.0)	0.3 (0.0)
Rejection	14/16 (87.5)	4/13 (30.8)	0/9 (0.0)	0/6 (0.0)

R

Figure S6, related to Figure 6

TAg⁺ HCC rejection through polyclonal CD8⁺ T_E cells and expansion of polyclonal CD8⁺ T_E cells after ATT.

- (A) Graphical representation of rejection of WT and Erap1-/- TAg+ HCC by polyclonal CD8+ T_E cells in WT and Erap1-/- H2b+ recipients.
- (B) Numerical summary of the tumor rejection experiments using polyclonal CD8+ T_F cells. Data represent the
- number of analyzed mice of n = 2 6 experiments per HCC pair / group, % rejection are parenthesized.

 (C) FACS analysis of CD8+ T_E cell expansion 1 week after ATT. WT \rightarrow WT n = 10 mice, $Erap1^{-/-}\rightarrow$ WT n = 14 mice, WT \rightarrow Erap1 $^{-/-}$ n = 8 mice, $Erap1^{-/-}\rightarrow$ Erap1 $^{-/-}\rightarrow$ WT n = 10 mice, $Erap1^{-/-}\rightarrow$ WT n = 14 mice, WT \rightarrow Erap1 $^{-/-}$ n = 8 mice, $Erap1^{-/-}\rightarrow$ Erap1 $^{-/-}\rightarrow$ Erap1 $^{-/-}$
- (C and D) All data are represented as mean ± SD, Kruskal-Wallis test.

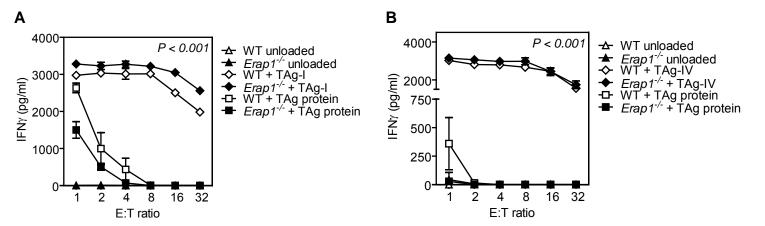


Figure S7

Analysis of ERAP1-dependent cross-presentation of TAg-I and TAg-IV by bone marrow-derived dendritic cells (BMDCs).

- (A) Cross-presentation of TAg-I processed from full-length TAg protein was analyzed in CD11c⁺ WT or *Erap1*-/- GM-CSF-differentiated BMDCs. After 7 days of co-culture with 20 ng/ml GM-CSF, BMDCs were loaded with 0.1 μM TAg-I or 30 ng purified TAg protein for 2 hours at 37°C, and were co-cultured with TCR-I T cells for 18 hours. Release of IFNy was measured by ELISA.
- (B) Cross-presentation of TAg-IV processed from full-length TAg protein was analyzed in CD11c⁺ WT or *Erap1*-/- GM-CSF-differentiated BMDCs. The experiment was performed as described for (A), but BMDCs were co-cultured with TCR-IV T cells.
- (A and B) Shown is one of two independent experiments with similar results. All data are represented as mean \pm SD, two-way ANOVA.