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Supplementary Materials and Methods 
Culture protocol for GSCs and NSC that were previously published 
GSC and NSC lines were grown in N2B27 neural basal media (STEMCELL Technologies) supplemented with EGF and fibroblast growth factor 2 (FGF-2) of 20 ng/mL each (Peprotech), on laminin-coated polystyrene plates (Sigma) and passaged according to Pollard and colleagues (1). NHA (STEMCELL Technologies) and NHA-Ras cells (Russell Pieper, University of California San Francisco, San Francisco, CA) were grown in astrocyte growth medium (Clonetics) according to the manufacturer's instructions and published protocols (2).

Culture protocol for GSCs from Mount Sinai Hospital 
Fresh surgical specimens were washed in PBS containing 2% penicillin-streptomycin-neomycin solution (Gibco cat #15640-55) and 1.5% antifungal solution (Gibo cat #15290-026). Tumor tissue was isolated from blood vessels using a sterile scalpel, minced finely, and digested in 20 ml 0.05% trypsin-EDTA (Gibco cat #25300-054) for 20 minutes at 37C with mixing every 5 minutes. Bovine pancreatic DNase I (Sigma cat #D4263) was added and the tissue was incubated for an additional 10 minutes. After centrifugation at 500g for 5 minutes, the supernatant was removed, the pellet resuspended in 25 ml DMEM/F12 medium (Gibco cat #11330-032), and the resulting mixture filtered through a cell strainer (Falcon cat #352360). Cells were then centrifuged again at 500g for 5 minutes and resuspended in 5 ml NeuroCult NS-A Proliferation Medium (Stemcell cat #05751) supplemented with recombinant human EGF (20 ng/ml, R&D cat #236-EG), bFGF (10 ng/ml, R&D cat #233-FB), and 0.0002% heparin (Stemcell cat #07980). Cells were transferred to T25 tissue culture flasks (Corning cat #430639). The medium was changed after 48 hours and then every 3-4 days thereafter. The number of passages is between 6-10: 6 passages for 10647A, 10647B, and 10647C; 8 passages for 7653B; 10 passages for 9212A, 9212B, 9217A, 9217B, and 9260B. 

Detection of BUB1BR/S status and IKD measurement in GSC cell lines 
The BUB1B-inhibition assay was described in Ding et al (3) and Toledo et al. (4). In short, the pGIPZ lentivirus containing shRNAs targeting BUB1B or scrambled sequence were used to infect GSCs.  After 7 days under standard growth conditions, the cell proliferative rate was measured using AlamarBlue reagent (Invitrogen). For analysis, shRNA-containing samples were normalized to their respective shControl samples. The procedure for measuring IKD was previously described (5).  In short, cells will be immuno stained with rabbit anti-Hec1 and CREST anti-serum (Immunovision) at 1:500 dilutions and imaged on DeltaVision fluorescence microscope and deconvolved with Applied Precision's SoftWorx package. KT pairs were identified using KT and centromere staining. IKDs were measured as the distance between Hec1 peak fluorescence intensities on a line-scan of the KT pair. The results suggested that IKDs occur in discrete intervals: long (~1.24μm) and short (~1.12μm). This analysis revealed 9 BUB1BS isolates, 4 BUB1BR isolates, and 5 isolates that had not been tested for BUB1BR/S but which had RNA-seq data available (Table S1). We removed one GSC (i.e. G25) from our further analysis due to its low number of mapped sequences for all three replicates (Table S1), resulting 4 GSC isolates of unknown BUB1BR/S status. 

Preprocessing of RNA-seq data
All RNA-seq data were processed using the following procedure. First, sequencing reads were aligned to the human reference genome hg19 using TopHat (6).  Next, the resulting aligned reads were analyzed by Cufflinks (7) with reference genome. Cufflinks assembled the aligned reads into transcripts with reference genome and reported the expression of those transcripts in Fragments Per Kilobase of exon per Million fragments mapped (FPKM). FPKM is an expression of the relative abundance of transcripts. FPKM+1 values were used for allowing log transformation, and were log transformed in our subsequent analysis.

Prediction of BUB1BS/R status 
We first identified genes whose expression levels were significantly associated with BUB1BS/R status. To identify the associated genes, we designed a multiple linear model to explain the variation in mRNA expression level for each gene in terms BUB1BS/R status and cell types as covariate by fitting the following model: 





Here, represents the observed expression level of the gene g for a sample s. [image: ], [image: ], and indicates whether the type of cell is NSC, GSC, or astrocyte, respectively, while [image: ] indicates whether the sample s was detected as BUB1BR or BUB1BR. The associated gene list was defined by its significance level of the coefficients [image: ]from the multivariate fit. We selected the gene whose significant level is at FDR <1% (corresponding p-value <10-3.9). 
	With the defined the gene list associated with BUB1BS/R status, we predicted BUB1BS/R status by the following two steps. First, we trained a classifier with the GSC samples whose BUB1BS/R status was determined. We used the elastic net with the expression levels of genes associated with BUB1BS/R status. The elastic net is a generalization of ridge regression and the lasso, and a regularization method for fitting a generalized linear model (8), as implemented in the R package glmnet (9). The objective function of the elastic net takes the form of ‘loss + penalty’:
[image: ],
where [image: ]and [image: ] are the coefficients of the GLM, N is the number of samples, [image: ]is the weight of observation i, [image: ]is the negative log-likelihood contribution of observation i, [image: ] represents the regularization parameter, which controls the amount of shrinkage, [image: ]represents the elastic net penalty, which controls the balance between ridge and lasso regression. [image: ]is the L2-norm and [image: ] is the L1-norm of [image: ]. Here, we used equal weights for all observation. We performed cross-validation to determine how the performance of the classifier depends on the regularization parameter of the elastic net, and determined the regularization parameter [image: ] and the elastic net penalty [image: ]. We used 5-fold cross-validation with 5 repeats.  
	Next, the elastic net classifier with the pre-determined parameter of [image: ] and [image: ]was used to predict BUB1BS/R status based on new sample’s expression levels. The expression profiles of different platforms (e.g. Affymetrix, RNAseq, Agilent etc) have fundamentally different distributions, resulting in false prediction of BUB1BS/R status based on expression profiles measured by the different one used in training the elastic net classifier. Therefore, if the expression profiles of the new samples were not measured by the same platform as the one used for training the elastic net classifier (i.e. not RNAseq), we transformed the new expression data (see Refine the BUB1BS/R classifier for different profiling platforms section for details). A significant positive predictive value of a sample indicates that the sample belongs to BUB1BS subtype; a significant negative predictive value indicates the sample-inhibition was predicted as BUB1BR subtype. The significance level of predictive value was computed by random permutation of each sample’s expression levels 500 times. We measured the predictive values of elastic net classifier for the permuted data, and computed FDR for the BUB1BS subtype at a given predictive value as the ratio the number of samples with above (or below for the BUB1BR subtype) predictive values, averaged over 500 randomized data sets. 

Refine the BUB1BS/R classifier for different profiling platforms 
Different expression profiling platforms (e.g. Affymetrix, RNAseq, Agilent etc) have fundamentally different distributions. If the expression profiling platform used for the new sample we want to predict is different from the one used in training elastic net classifier (i.e. RNAseq), this results in false prediction of BUB1BS/R status. Therefore, in this case, we transformed the expression profiles of sample we want to predict into the one whose distribution was similar to the elastic net classifier. For TCGA data, GBM patients were measured in three different platforms; Affymetrix, RNAseq and Agilent. There are 150 common samples whose expression profiles measured RNAseq and Agilent, and 151 for RNAseq and Affymetrix. Based on these samples’ expression levels, we transformed Agilent and Affymetrix expression levels into RNAseq expression levels. We fitted following linear regression for each gene: [image: ], where [image: ] and [image: ]represents expression level of gene g measured by RNAseq and Affymetrix/Agilent, respectively. The coefficients [image: ]and [image: ]were used to linearly transform the expression levels of other samples. We filtered out genes with low correlation between gene expression levels from RNAseq and other platforms at Bonferroni corrected p-value 0.05. We obtained 96% and 88% of genes and used them for refining the elastic net classifier and prediction for Agilent and Affymetrix, respectively.   

Extracting molecular profiles of GBM tumor cells from tumor tissue expression
We hypothesized the expression levels of bulk tumor tissue can be explained as the linear combination of signature of each cell type as follows: 
[image: ], 
where yg,s represents the expression level of gene g and sample s, Xk,g represents expression level of cell type k for gene g. The error  can be divided into two parts, GBM tumor cellss (expected similar to GSC), pGSC x and normal cell types (1-pgsc)x, and can be measured by the difference between yg,s  and weighted summation of each cell signature. The sample specific molecular profile of GBM tumor cells (expected similar to GSC) is defined as follows:
[image: ].
The sample specific molecular profile of GBM tumor cells (expected similar to GSC)  [image: ]was used for predicting BUB1BS/R status for each sample. 

Genome-wide shRNA screens 
ShRNAs were obtained from the RNAi Shared Resource (FHCRC) or Open Biosystems (Huntsville, AL) in the pGIPZ lentiviral vector. For virus production pGIPZ-shRNA plasmids were transfected into 293T cells along with psPAX and pMD2.G packaging plasmid to produce lentivirus. ~24 hours after transfection, neural stem cell expansion medium was added to replace original growth medium. Virus was harvested 24 hours after medium change and stored at -80C. GSCs and NSCs were infected at multiplicity of infection (MOI) <1 and selected with 1-4μg of puromycin for 2-4 days, depending on the target cell type.
	The shRNA screen and Bar-code array analysis was performed as previously described (10). Three GSC cell (G166, 0131, 0827) and one NSC cell (CB660) were infected with pools of lentiviral shRNAs and analyzed after 21 days of outgrowth for alterations in shRNA representation (n=3). For each population shRNAs were amplified using a half-shRNA PCR strategy from genomic DNA representing ~5M cells (~33μg). Illumina sequencing adaptors were ligated onto purified shRNA PCR products (Illumina kit) and used on an Illumina HiSeq 2000 sequencer (Genomics facility, FHCRC). The resulting reads were mapped onto a reference library containing library shRNA sequences and filtered (phred score= 37). Mapped reads were tallied and compared using two R/Bioconductor packages, edgeR, developed for RNA-seq analysis, and limma, developed for microarray analysis. Both comparisons subtracted control from experimental replicates to calculate logFC and used the Benjamini-Hochberg FDR calculation to adjust p-values for multiple comparisons.

Identification of genes required for the expansion of BUB1BS and BUB1BR GSCs.
First, we detected each isolate’s candidate targets as shRNAs underrepresented in GSCs relative to NSCs, resulting 1061, 1133, 1045 candidate lethal genes at adjust p-value <0.05 and |log2(Fold-change)|>0.585, for GSC-G166, GSC-0131, and GSC-0827 respectively. Based on these candidate lists, we identified candidate targets only required for expansion of BUB1BS GSCs as the common candidates of GSC-G166 and GSC-0131 but not of GSC-0827, and those of BUB1BR GSCs as the candidates of GSC-0827 but neither of GSC-G166 and GSC-0131. This yielded differentially required 122 and 757 candidate targets of BUB1BS GSCs and BUB1BR GSCs, respectively. We further extracted the candidate lethal targets of BUB1BR GSCs because 757 candidate targets are likely to include 0827 specific lethal genes. We tested whether the each candidate target’s expression level of 0827 isolate were inherited from the expression level of other BUB1BR GSCs by using Kolmogorov-Smirnov test. We identified 181 significant genes out of 757 genes and removed them from the list, resulting 576 candidate lethal genes of BUB1BR GSCs. 

Construction of glioblastoma-specific regulatory network 
We de novo constructed a GBM regulatory network by using a previously described procedure (11,12) from over 421 TCGA GBM tumor samples (13) by integrating gene expression and DNA copy number variation data (14,15). 

BUB1BS/R specific lethal sub-network analysis 
We projected screen hits onto our GBM regulatory network. 62 and 170 candidate hits of BUB1BS and BUB1BR GSCs appeared as nodes in the GBM network. The sub-networks in the GBM network were examined by investigation of these 62 and 170 candidates’ neighborhoods, representing the BUB1BS lethal sub-network and the BUB1BR lethal sub-network. The closely located candidates in regulatory network will be connected each other and construct bigger sub-network. 
	We selected significantly large BUB1BS specific and BUB1BR specific lethal sub-network as follows. First, we selected significantly large sub-network. We randomly selected 62 and 170 of genes from the GBM regulatory network, and counted the number of genes for each connected sub-network. We performed this procedure 1000 times and find number of genes that is significantly big compared to other sub-networks (p-value 0.05). We found 22 and 14 genes as the number of genes corresponding to p-value 0.05, for BUB1BS and BUB1BR sub-network respectively. This results in three significantly large sub-networks for both BUB1BS and BUB1BR sub-networks. Secondly, we detected the subtype specific lethal sub-network by filtering out sub-networks that have more than one lethal gene that is not included in that subtype specific lethal genes; BUB1BR lethal sub-network should not include more than one BUB1BS lethal genes or cancer lethal genes. Based on this procedure, we detected two BUB1BS lethal sub-network. 

Principle Component Analysis based on the expression profiles. 
To investigate the global view of expression levels, we performed Principle Component Analysis (PCA) based on the gene expression levels of all samples including GSC, NSC cell lines and astrocytes. The contribution of each sample to PC1 and PC2 were plotted (Fig. S1). PCA separated the samples into groups corresponding to the cell type as well as the BUB1BS/R status. The position of samples along PC1 and PC2 were highly correlated with cell types; the astrocytes were separated as one group even though they have the different BUB1BS/R status. 
	We also performed PCA based on the gene expression levels of tissue and GSC from the Mount Sinai GBM patients. The contribution of each sample to PC1 and PC2 were plotted (Fig. S4A). PCA separated the samples into groups corresponding to their types, tissue or GSC.

Pathway enrichment
We performed pathway enrichment analysis for genes of interests (e.g. genes associated with the BUB1BS/R status for Fig. S2 or genes within sub-networks for Figure 3). We collected the functional annotation in terms of 1320 canonical pathways from BioCarta, KEGG and Reactome (16) and Gene Ontology (GO) categories, and performed enrichment analysis of genes of interests using Fisher’s exact test. The FDR corresponding to a given p-value threshold was computed as the ratio of the number of pathways or GO categories with a p-value below threshold, averaged over 50 randomized data sets, and the number of pathway or GO categories with p-value below threshold. A 1% FDR based on the empirical permutation test corresponds to a Fisher’s exact test p-value <5x10-2, for canonical pathways, and p-value <1x10-3 for GO categories. 

Normal brain cell expression data: GSE67835 
The expression levels of diverse normal brain cells (17) were used to define profiles of normal cell within brain. We downloaded the raw RNA-seq data from http://www.ncbi.nlm.nih.gov/sra (accession no. SRP057196), which measures gene expression levels at single cell level for 466 cells with 9 different cell types in human brain. The cell types include astrocytes, endothelial, microglia, neurons, oligodendrocytes, OPC, fetal_quiescent, fetal_replicating, and hybrid. We excluded three cell types (i.e. fetal_quiescent, fetal_replicating, and hybrid) for our further analysis. We converted .sra files to .fastq file and followed the same procedure with that of our GSC data to measure gene expression level as a FPKM value. 

GBM cohort data set: TCGA data 
All TCGA cancer data set were downloaded from “The Cancer Genome Atlas” data portal (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp). For microarray data, we downloaded Level 3 gene expression levels measured in Agilent microarray for 615 samples, Affymetrix microarray for 558 samples. For RNA-seq data, we downloaded Level 1 data files and followed the same procedure with that of our GSC data to measure gene expression level as a FPKM value. FPKM+1 values were used for allowing log transformation. The microarray and RNA-seq mRNA expression values were log2 transformed for all subsequent analysis. Each data set includes 596, 548, and 156 primary tumor samples for Agilent, Affymetrix, and RNA-seq, respectively. For the samples with replicates or triplicates, the average expression levels were used for 579, 529, and 154 unique samples for Agilent, Affymetrix, and RNA-seq, respectively. For Copy Number Variation (CNV) data of GBM, we downloaded the result from GISTIC used in the previous TCGA study (18), which estimates copy number for each gene across all samples. 

GBM cohort data set: Gravendeel et al. data
We further used the previous data set that measured gene expression profile of 283 glioma samples including 159 GBM samples (19) and 124 LGG samples. We downloaded RMA-normalized expression levels from Gene Expression Omnibus (GEO) (Accession number GSE16011). All the corresponding survival information was also available. We only used 159 GBM samples for the further analysis.

Cell line data set: CCLE and CGP data sets 
We downloaded expression levels of 1037 cancer cell lines processed using Robust Multi-array Average (RMA) and normalized using quantile normalization from the Cancer Cell Line Encyclopedia (CCLE) (20). All annotation data including cell line annotation and pharmacological profiling drug data associated with CCLE were downloaded from the same website (http://www.broadinstitute.org/ccle/home). This includes 62 glioma cancer cell lines. We excluded 3 cell lines (i.e. GI-1, H4, and SNU738) that are not inherited from astrocytomas, resulting 59 cell lines analyzed. We also downloaded normalized gene expression data of 789 cancer cell lines including 43 glioma cell lines (only astrocytomas) from the Genomics of Drug Sensitivity in Cancer project (http://www.cancerrxgene.org/) (21).  The corresponding drug sensitivity data was downloaded the same website. 

Orthotropic xenograft tumor data: Joo et al. data
We downloaded the data set that measured gene expression profile of 58 GBM patients with the parallel in vivo xenograft tumors. The expression data were downloaded from Gene Expression Omnibus (GEO) (Accession number GSE42669) with the clinical information. The tumor invasion of human patient and in vivo tumor invasion of each xenograft was shown in Table 1 in Joo et al., (22).  

GBM single cell data: Patel et al. data
We analyzed single cell transcriptomes from five tumors and stemlike tumor-propagating glioblastoma cells (GBM6 and GBM8), and population controls including bulk samples for five tumors and stemlikes cells from three tumors. The expression data were downloaded from Gene Expression Omnibus (GEO) (Accession number GSE57872). We downloaded the raw RNA-seq data (accession no. SRP042161), then converted .sra files to .fastq file using the SRA toolkit suite. Next, sequencing reads were aligned to the human reference genome hg19 using TopHat (6), then, the mapped sequences were aligned with htseq-count to quantify the read counts for each gene (23). The trimmed mean of M-values normalization (TMM) was used to estimate normalized counts and log2 transformed expression levels by using edgeR R package (24). Data was processed as described below using log2 transformed counts per millions. Genes with non-expression for more than 40% samples were filtered out, resulting 6006 genes. Cells expressing less than 1500 out of 6006 genes were excluded, resulting 570 cells out of 875.  We further filtered out cells with too low (<0.3) or too large normalization factors based on TMM (> 1.3) were filtered out, resulting in 480 cells in total. For each single cell sample or population controls, we applied our BUB1BR/S classifier and identified predicted values from elastic net.

Association between drug sensitivity and BUB1BS/R status
We used two available drug sensitivity measurements, the concentration at which the drug response reached an absolute inhibition of 50% (IC50) and an ‘activity area’ to capture simultaneously the efficacy and potency of a drug (20).  For CCLE, 8-point dose–response curves for 24 compounds across 479 cell lines were generated to estimate IC50 and an activity area. For CGP, the 130 drugs selected for screening, and they assayed 48,178 drug–cell-line combinations with a range of 275–507 cell lines screened per drug (21). The effect of 72h of drug treatment on cell viability was used to estimate the half-maximal inhibitory concentration (IC50), area under the slope of the dose–response curve (AUC). For IC50, we used negative log-transformed values, and for AUC, we used 1-AUC values that corresponding to activity area for further analysis. For both measurements, the higher value represents more sensitive to the treated drug.  

Measure drug sensitivity of Etoposide and Irinotecan in GSCs.
The effects of Etoposide and Irinotecan on GSC isolates were determined by treating them with various concentrations of each drug for incubation periods 72h at concentrations ranging from 0.001 M to 1mM. Cells were passaged and cultured in serum free medium (StemCell Tech, Cat#: 05751). Sterile 96 well plates were coated with Laminin (Corning, Cat#: 354232) for 2 hours.  The cultures were exposed to digest Accutase (Innovative cell tech, Cat#: AT-104) and seeded in the center 72 wells of the plate with concentration of at least 5000 cells per well and with 200 microliters of media.  The plates were then incubated in a 37 degree incubator with 5% CO2 and 90% humidity until they reached 30% confluence over the bottom of the plate.  After trypsinization and seeding into coated 96-well plates, cultures grew as either monolayers (10647B) or attached gliomaspheres (9217B). Monolayers were observed daily for confluence, while attached spheres were observed daily for increasing average sphere diameter. When it could be determined that confluence was 70%, or that spheres were progressively enlarging in diameter greater than 10 cell diameters (generally, 3 to 4 days) the inhibitor agent was applied.  At this time, the 200 microliters of media was removed and replaced with media and various concentrations of the test compounds.  Concentrations of Irinotecan between 0.01-1000 micromolar and Etoposide between 1-4000 micromolar were tested in quadruplicate and sextuplicate, respectively.  Eight wells in each plate were dedicated to cultures exposed to no drug.  The two external lanes that lacked cells were filled with 200 microliters of media. These plates were then incubated for 72 hours.  At the conclusion of this time period, 40 microliters of MTS agent (ProMega cat#G3580) was added and mixed with each culture as well as 4 of the wells without cells.  The cells were incubated for 1 hour prior to exposure with the spectrophotometer for 4 hours. At the time of absorbance reading, each well was mixed thoroughly and read in the spectrophotometer at 490 nm absorbance. 
	The drug concentrations (x-axis in Figure 5 BC) were log10 transformed and plotted against normalized cell growth based on negative controls. The nonlinear regression (sigmoidal dose-response with variable slope) was fitted by using GraphPad Prism (GraphPad Software, Inc., San Diego, CA).   
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Supplementary Fig. S1. Principle component analysis (PCA) of gene expression levels. Each dot represents one of samples in multidimensional gene expression space projected on principal plane formed by first (x-axis) and second principal axes (y-axis).  The color indicates cell types (e.g. GSC, NSC or astrocyte) and BUB1B-inhibition sensitiveness. 
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Supplementary Fig. S2. Gene set enrichment analysis of the 838 BUB1BS/R-associated genes. The 838 BUB1BS/R-associated genes were significantly enriched for cell cycle related pathways such as the mitotic cell cycle

























[image: ]

Supplementary Fig. S3. Cross-validation of the elastic net classifier. The results of cross-validation show mean squared error for variable elastic net penalty [image: ] and the regularization parameter [image: ]. This indicates that the elastic net classifier based on the genes associated with BUB1BS/R can achieve low mean squared error. The selected [image: ] and [image: ] were 0.01. 
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Supplementary Fig. S4. Expression features based on tumor tissue and GSC. (A) Principle component analysis (PCA) of  gene expression levels for tumor tissue and GSC. Each dot represents one of samples in multidimensional gene expression space projected on principal plane formed by first (x-axis) and second principal axes (y-axis).  The color indicates types of cell, tumor tissue (green) and GSC (orange). (B) The prediction of the BUB1BR/S status based on tumor tissue expression (y-axis) and GSC expression (x-axis). (C) The prediction of the BUB1BR/S status based on tumor tissue expression (y-axis) and the predicted proportion of normal cells in the tumor tissues (x-axis). (D) The histological staining of tumor tissues for 9217A and 10647C. (E) The prediction of the BUB1BR/S status based on the deconvoluted expression profiles of GBM tumor compartment for tumor tissue (y-axis) and GSC expression (x-axis).  
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Supplementary Fig. S5. Association between predicted BUB1B-inhibition sensitivity values and clinical information. (A) Association between predicted sensitivity values and gender or the methylation status of MGMT promoter were shown for each data set, which is not significantly associated with for any data sets. (B) Association between predicted sensitivity values and age at diagnosis. 

[image: ] 
Supplementary Fig. S6. BUB1BS and BUB1BR-specific sub-networks. (A) BUB1BS-specific sub-networks, which were enriched for candidate lethal hits of BUB1BS GSC isolates; (B) BUB1BR-specific sub-networks, which were enriched for candidate lethal hits of BUB1BR GSC isolates. The color indicates BUB1BS/R lethality. 
[image: ]
Supplementary Fig. S7. Expression difference between BUB1BS GSCs and BUB1BR GSCs. Genes are within two lethal sub-networks that are to BUB1BS cells. The expression levels of these genes were mostly up-regulated for BUB1BS GSCs
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Supplementary Fig. S8. The Predicted BUB1B-inhibition sensitivity values of glioma cell lines. (A) Expression values from Cancer Cell Line Encyclopedia (CCLE) database (B) Expression values from Cancer Genome Project (CGP) database.  
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Supplementary Fig. S9. Boxplot of drug sensitivity for glioma cell lines. –log(IC50) for glioma cell lines from CGP data were shown in x-axis. Rows represent different drugs.  Red indicates sensitivity for Camptothecin. 
[image: ]
Supplementary Fig. S10. Application of BUB1BR/S classifier to single cell RNA-seq data of two stemlike tumor-propagating glioblastoma cells (GBM6 and GBM8). For each tumor sample, the number of genes with non-expressed levels and predicted values from elastic net were shown for each single cell data.
[image: ]
Supplementary Fig. S11. Application of BUB1BR/S classifier to single cell RNA-seq data. (A-E) For each tumor sample, the number of genes with non-expressed levels and predicted values from elastic net were shown for each single cell data (left panel). The application of BUB1B classifier to population controls including bulk samples for five tumors (green), stemlikes cells from three tumors (orange), and estimated GBM tumor cell signatures (yellow) from bulk samples were shown (right panel).  
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Supplementary Fig. S12. The application of BUB1B classifier to population controls including bulk samples for three tumors (green) and its corresponding stemlikes cells GSC cell (orange), and estimated GBM tumor cell signatures from bulk samples were shown (yellow). 


Supplementary Table S1. Summary of GSC samples and prediction of BUB1B sensitivity for GSC cell lines based on expression levels. The long IKD corresponds to BUB1BR and short IKD corresponds to BUB1BS.  

	Sample
	Cell Type
	Subtype1
	IKD 
	References2
	BUB1BR/S
subtype3
	Number of Mapped4
	Inferred BUB1BR/S
subtype5

	022T-1
	GSC
	Class
	nd
	(22)
	sensitive
	17218660
	-

	022T-2
	GSC
	Class
	nd
	(22)
	sensitive
	12066766
	-

	022T-3
	GSC
	Class
	nd
	(22)
	sensitive
	15486051
	-

	1406_No1
	GSC
	nd
	nd
	(25)
	nd
	68523679
	resistant

	1406_No2
	GSC
	nd
	nd
	(25)
	nd
	65193963
	resistant

	1406_No3
	GSC
	nd
	nd
	(25)
	nd
	70733210
	resistant

	1502_No1
	GSC
	nd
	long
	(25)
	resistant
	65807734
	-

	1502_No2
	GSC
	nd
	long
	(25)
	resistant
	74986546
	-

	1502_No3
	GSC
	nd
	long
	(25)
	resistant
	73213380
	-

	448T-1
	GSC
	ProN
	nd
	(22)
	nd
	11129996
	sensitive

	448T-2
	GSC
	ProN
	nd
	(22)
	nd
	13053546
	sensitive

	448T-3
	GSC
	ProN
	nd
	(22)
	nd
	13872398
	sensitive

	559T-1
	GSC
	Class
	nd
	(22)
	nd
	13823820
	sensitive

	559T-2
	GSC
	Class
	nd
	(22)
	nd
	9643535
	sensitive

	559T-3
	GSC
	Class
	nd
	(22)
	nd
	9737972
	sensitive

	777T-1
	GSC
	Mes
	long
	
	resistant
	8831370
	-

	777T-2
	GSC
	Mes
	long
	
	resistant
	9825263
	-

	777T-3
	GSC
	Mes
	long
	
	resistant
	9713198
	-

	G14-1
	GSC
	Mes
	nd
	(1,26)
	sensitive
	7903500
	-

	G14-2
	GSC
	Mes
	nd
	(1,26)
	sensitive
	11743792
	-

	G14-3
	GSC
	Mes
	nd
	(1,26)
	sensitive
	13264587
	-

	G19-1
	GSC
	Mes
	nd
	(26)
	sensitive
	10950939
	-

	G19-2
	GSC
	Mes
	nd
	(26)
	sensitive
	9800196
	-

	G19-3
	GSC
	Mes
	nd
	(26)
	sensitive
	10321977
	-

	G21-1
	GSC
	Mes
	long
	(26)
	resistant
	11396494
	-

	G21-2
	GSC
	Mes
	long
	(26)
	resistant
	13053483
	-

	G21-3
	GSC
	Mes
	long
	(26)
	resistant
	9970826
	-

	G25-1
	GSC
	ProN
	nd
	(26)
	nd
	1943505
	-

	G25-2
	GSC
	ProN
	nd
	(26)
	nd
	1818711
	-

	G25-3
	GSC
	ProN
	nd
	(26)
	nd
	1824227
	-

	G26-1
	GSC
	Class
	nd
	(26)
	sensitive
	9879966
	-

	G26-2
	GSC
	Class
	nd
	(26)
	sensitive
	12204276
	-

	G26-3
	GSC
	Class
	nd
	(26)
	sensitive
	9914092
	-

	G7-1
	GSC
	Class
	nd
	(26)
	sensitive
	9078974
	-

	G7-2
	GSC
	Class
	nd
	(26)
	sensitive
	6569400
	-

	G7-3
	GSC
	Class
	nd
	(26)
	sensitive
	13912425
	-

	0131-02-11
	GSC
	Mes
	short
	(27)
	sensitive
	19436150
	-

	0131-02-17
	GSC
	Mes
	short
	(27)
	sensitive
	20140257
	-

	0131-02-22
	GSC
	Mes
	short
	(27)
	sensitive
	17543654
	-

	0827-02-11
	GSC
	ProN
	long
	(27)
	resistant
	20551319
	-

	0827-02-17
	GSC
	ProN
	long
	(27)
	resistant
	21554736
	-

	0827-02-22
	GSC
	ProN
	long
	(27)
	resistant
	24459202
	-

	1228-02-11
	GSC
	Class
	short
	(27)
	sensitive
	18777360
	-

	1228-02-17
	GSC
	Class
	short
	(27)
	sensitive
	18424705
	-

	1228-02-22
	GSC
	Class
	short
	(27)
	sensitive
	22849171
	-

	G144-02-11
	GSC
	nd
	nd
	(1,26)
	nd
	22919924
	resistant

	G144-02-17
	GSC
	nd
	nd
	(1,26)
	nd
	21570557
	resistant

	G144-02-22
	GSC
	nd
	nd
	(1,26)
	nd
	20291669
	resistant

	G166-02-11
	GSC
	Mes
	short
	(1,26)
	sensitive
	21740976
	-

	G166-02-17
	GSC
	Mes
	short
	(1,26)
	sensitive
	21874363
	-

	G166-02-22
	GSC
	Mes
	short
	(1,26)
	sensitive
	21791876
	-

	G179-02-11
	GSC
	Mes
	short
	(1,26)
	sensitive
	20952757
	-

	G179-02-17
	GSC
	Mes
	short
	(1,26)
	sensitive
	21982156
	-

	G179-02-22
	GSC
	Mes
	short
	(1,26)
	sensitive
	23536076
	-

	CB660-02-11
	NSC
	nd
	long
	(28)
	resistant
	19426184
	-

	CB660-02-17
	NSC
	nd
	long
	(28)
	resistant
	19540543
	-

	CB660-02-22
	NSC
	nd
	long
	(28)
	resistant
	18931092
	-

	NHA-1
	astrocyte
	Mes
	long
	
	resistant
	11254979
	-

	NHA-2
	astrocyte
	Mes
	long
	
	resistant
	11856853
	-

	NHA-3
	astrocyte
	Mes
	long
	
	resistant
	8544432
	-

	NHA-RAS-1
	astrocyte+RasV12 
	Mes
	short
	
	sensitive
	15662578
	-

	NHA-RAS-2
	astrocyte+Ras V12
	Mes
	short
	
	sensitive
	13556713
	-

	NHA-RAS-3
	astrocyte+Ras V12
	Mes
	short
	
	sensitive
	11143848
	-


1Subtypes determined by previous classification (29). 2Refereces of cell lines. 3The sensitivity to BUB1B-inhibition. 4Number of mapped sequences by Tophat (6). 5The sensitivity status to BUB1B-inhibtion inferred by expression levels. “—“ indicates no data available or not inferred. “nd” represents not-determined.









Supplementary Table S2. Composition of each cell type based on tumor tissue expression levels. 
	Sample
	OPC
	Astrocytes
	Endothelial
	Microglia
	Neurons
	Oligodendrocytes
	GBM tumor cells

	7653_B_tissue
	0
	0.1702
	0.24783
	0
	0.07068
	0.00964
	0.50154

	9212_A_tissue
	0
	0.0706
	0.21585
	0.05407
	0.04717
	0.05672
	0.55548

	9212_B_tissue
	0
	0.1171
	0.28122
	0.06715
	0.07363
	0.06344
	0.39736

	9217_A_tissue
	0
	0.2187
	0.11978
	0.07502
	0.13651
	0.25404
	0.19582

	9217_B_tissue
	0
	0.1236
	0.29320
	0.04178
	0.02933
	0.05410
	0.45788

	10647A_tissue
	0
	0.0032
	0.39100
	0.10866
	0
	0.01603
	0.48102

	10647B_tissue
	0
	0
	0.43412
	0.10567
	0
	0
	0.46019

	10647C_tissue
	0
	0.0657
	0.30755
	0.12616
	0.04266
	0.13983
	0.31800

	9260B_tissue
	0
	0.0947
	0.43317
	0.08710
	0.00711
	0
	0.37787






Supplementary Table S3. Association between BUB1BS/R status and survival rate. The survival association was performed for TCGA data(13), Gravendeel et al.,(19), and Joo et al., data set(22).

	Study
	Platform 
	# samples 
	p-value by Cox1

	
	
	
	GSC3

	GSC: age + BUB1B4 
	Tissue5

	Tissue:age +BUB1B6

	TCGA
	RNA-seq
	154
	0.0500
	0.0080
	0.2903
	0.3385

	
	Agilent
	574
	0.0185
	0.15
	0.0286
	0.33

	
	Affymetrix
	529
	0.0405
	0.40
	0.0747
	0.51

	Gravendeel et al.
	Affymetrix
	159
	0.0097
	0.025
	0.0638
	0.427

	Joo et al. 
	Affymetrix
	58
	0.0035
	0.0063
	0.0064
	0.915


1p-value of effect of predicted sensitivity value by fitting cox proportional hazards model (30). The BUB1BS/R status is measured by 3-4molecular signature of GSC compartment or 5-6bulk tissue expression levels. 4,6Age is added as covariate in cox proportional hazards models. 








Supplementary Table S4. Normalized cell growth (%) of 9217B and 10647B for etoposide treatment. 
	Concentration(M)
	10647B 

	0
	98.87
	102.10
	100.10
	111.80
	94.19
	92.95

	1
	104.95
	115.33
	107.93
	109.20
	99.38
	92.36

	10
	94.70
	119.50
	114.35
	110.35
	93.63
	81.98

	50
	73.77
	101.84
	88.78
	82.27
	65.17
	69.04

	100
	70.66
	90.10
	87.17
	87.12
	77.04
	62.58

	250
	68.28
	73.26
	74.91
	80.02
	58.83
	50.75

	500
	62.20
	67.56
	79.81
	75.81
	67.47
	52.96

	1000
	58.15
	71.77
	79.21
	83.64
	75.00
	61.85

	2000
	61.60
	63.09
	68.49
	66.41
	56.79
	52.79

	4000
	50.88
	54.54
	50.20
	52.37
	50.88
	50.11

	Concentration(M)
	9217B

	0
	110.67
	97.28
	92.87
	96.02
	100.59
	102.56

	1
	103.82
	94.13
	87.67
	90.74
	94.21
	100.83

	10
	96.26
	93.74
	83.73
	87.51
	94.29
	91.45

	50
	70.89
	71.60
	68.61
	66.01
	68.37
	76.80

	100
	58.92
	55.93
	56.56
	60.50
	57.82
	55.77

	250
	37.18
	36.16
	34.34
	31.67
	36.63
	36.00

	500
	25.44
	24.97
	27.41
	26.47
	24.18
	25.05

	1000
	21.27
	21.50
	22.21
	21.58
	19.69
	19.46

	2000
	16.70
	16.38
	18.43
	17.80
	14.34
	15.05
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Expression difference between BUB1B® and BUB1BR GSCs
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drug sensitivity of glioma cell lines
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