Supplementary Legends Figure S1. Recipient mice develop pleiomorphic mILCs that are infiltrated by immune cells. (A) Recipient mammary tumors were characterized by immunohistochemistry and classified based on their histological phenotype (n=16, 14 and 14 for recipients 1, 2 and 3 respectively). (B) Like spontaneous $K14cre;Cdh1^{F/F};Trp53^{F/F}$ derived mammary tumors (upper row), recipient mammary tumors (lower row) are infiltrated by CD3⁺ T-lymphocytes and F4/80⁺ macrophages. Scale bar = 50 μ m. Representative images are shown. Figure S2. Genomic profiles of $K14cre;Cdh1^{F/F};Trp53^{F/F}$ derived donor mILCs are highly conserved in transplanted recipient outgrowths. (A-C) Genomic profiles of paired $K14cre;Cdh1^{F/F};Trp53^{F/F}$ derived donor tumors (red curves, A = donor mILC 1, B= donor mILC 2, C=donor mILC 3) and related recipient outgrowths (grey and black curves, n=3-4 per donor). **Figure S3. Recipient mammary tumors and distant metastases exhibit very similar genomic profiles.** (A-C) aCGH profiles of paired recipient mammary tumors (red curves, A=recipient 1b, B=recipient 2b, C=recipient 3b) and related lung- and lymph node metastases (grey and black curves, n=2-3 per recipient). Figure S4. Genomic profiles of paired lung- and lymph node metastases suggest that metastatic dissemination to these organs is not driven by recurrent, tissue specific copy number aberrations. Paired sets (3-4 sets per donor) of recipient mammary tumors and related lymph node-(A&C) or lung metastases (B&D) were analyzed by aCGH. Using quantile normalized genomic profiles, we directly compared paired genomic profiles by computing so-called 'delta-profiles' and subtracting the genomic profiles of recipient mammary tumors from their related metastases. Delta-profiles were then segmented and segments which exceeded an absolute value of 0.1 (A&B) or 0.2 (C&D) were plotted per chromosome. (DR set, paired sets (indicated by lower case letters) of donor-related (indicated by numbers) recipient mammary tumors and their metastases. R, recipient tissue; ax. LN, axillary lymph node metastasis; caud. LN, caudal lymph node metastasis; lung, lung metastasis; renal LN, renal lymph node metastasis; tumor, primary mammary tumor).