
Supplementary Information for 
 
“Predicting Cancer Drug Response by Proteomic Profiling” 
 
Yan Ma, Zhenyu Ding, Yong Qian, Xianglin Shi, Vince Castranova, E. James Harner, 
and Lan Guo 

 
 
Table of Contents 
 

1 Data Sets Description _______________________________________________ 2 

2 Defining Cutoffs of Drug Sensitivity and Resistance______________________ 3 

3 Constructing Optimal Classifiers _____________________________________ 6 

3.1 Experiments Using Random Forests_______________________________ 6 

3.2 Experiments Using WEKA Learners ______________________________ 7 

4 Assessing the Significance of the Prediction Results ______________________ 8 

5 Programming Source Code _________________________________________ 10 

5.1   R Code for Random Forests Experiments ___________________________ 10 

5.2   C++ Code for Assessing the Significance of Our Prediction Results ______ 11 

6 References _______________________________________________________ 16 
 
 
 
Table of Figures 
 
Figure 1.  Chemosensitivity profiles of different cancer types (using 0.5 SDs)................. 3 
Figure 2.  Chemosensitivity profiles of different cancer types (using 0.6 SDs)................. 4 
Figure 3.  Chemosensitivity profiles of different cancer types (using 0.8 SDs)................. 5 
Figure 4.  Comparing intermediate range of drug responses in different cancer types ...... 5 
Figure 5.  Prediction accuracy of the constructed optimal classifiers................................. 8 
Figure 6.  Histogram of P-values generated from method 1............................................... 9 
Figure 7.  Histogram of P-values generated from method 2............................................. 10 
 
 
 
 
 
 
 



1 Data Sets Description 
 

In this study, we used two data files from the NCI DISCOVER database 
(http://discover.nci.nih.gov/).  Specifically, we predicted drug response of 60 human 
cancer cell lines (NCI-60) to 118 anti-cancer drugs by proteomic profiling.  Following are 
the two datasets used in the study. 
 
Data file 1: Proteomic profiling of the NCI-60 cancer cell lines. 
 
Link: http://discover.nci.nih.gov/host/2003_profilingtable7.xls
 
Description: 52 proteins expression profiles were analyzed across 60 human cancer cell 
lines (NCI-60). 
Column A: HUGO name  
Column B: Antibody name  
Column C: Vendor  
Columns D-BK: Protein expression values on 60 human cancer cell lines 
 
The data file was generated from a previous publication by Nishizuka et al. (1)  They 
developed a protocol for making reverse-phase protein lysate microarrays with a larger 
number of spots than previously feasible.  They analyzed the data points for 52 antibodies 
by using P-SCAN and a quantitative dose interpolation method for 60 human cancer cell 
lines (NCI-60).   The clustered images of the protein expression profiles for the 60 cancer 
cell lines revealed biologically meaningful patterns.  The protein expression patterns also 
conformed to the mRNA expression patterns for the same genes related to cell structure.     
 
Data file 2: Drug activity data of 118 “Mechanism of Action” drugs. 
 
Link: 
http://discover.nci.nih.gov/nature2000/data/selected_data/dataviewer.jsp?baseFileName=
a_matrix118&nsc=2&dataStart=3
 
Description: It is a database of 118 anti-cancer drug activities across the NCI-60 cancer 
cell lines, whose mechanisms of action are putatively understood.  Some of these drugs 
are currently in routine clinical use for cancer treatment, while others are either in clinical 
trials or in late stages of drug development.  
  
Column A: Mechanism of action  
Column B: Drug name  
Column C: NSC number  
Columns D-BK: Drug activities (-log10 GI50) across 60 human cancer cell lines.  GI50 is 
the concentration required to inhibit cell growth by 50% compared with untreated 
controls.  The activity profile of a compound consists of 60 such activity values, one for 
each cell line.    
 

 2

http://discover.nci.nih.gov/
http://discover.nci.nih.gov/host/2003_profilingtable7.xls
http://discover.nci.nih.gov/nature2000/data/selected_data/dataviewer.jsp?baseFileName=a_matrix118&nsc=2&dataStart=3
http://discover.nci.nih.gov/nature2000/data/selected_data/dataviewer.jsp?baseFileName=a_matrix118&nsc=2&dataStart=3


The data file was from a previous publication of Scherf et al. (2) They used cDNA 
microarrays to assess gene expression profiles in the NCI-60 lines, and correlated gene 
expression and drug activity patterns in the NCI-60.  They concluded that clustering the 
cell lines based on gene expression entailed relationships very different from those 
obtained by clustering the cell lines based on their response to drugs.   In addition, gene-
drug relationships for the chemotherapeuticagents 5-fluororacil (5-FU) and L-
asparaginase exemplified how variations in the transcriptional levels of particular genes 
relate to mechanisms of drug sensitivity and resistance.    

 

2 Defining Cutoffs for Drug Sensitivity and Resistance 
 

We investigated the chemosensitvity profiles of these 118 anti-cancer agents using 
different cutoffs for defining drug responses.  In the literature, there is no formal 
definition regarding what standard deviation should be used as cutoffs in determining 
drug responses.  
 
The data file containing drug activity data of the 118 anti-cancer agents were processed to 
define drug resistance and sensitivity for the NCI-60 lines.  Specifically, for each drug, 
log10 (GI50) values were normalized across the 60 cell lines.   Cell lines with log10 (GI50) 
at least 0.5 SDs above the mean were defined as resistant to this drug. Those with log10 
(GI50) at least 0.5 SDs below the mean were defined as sensitive to the drug. The 
remaining cell lines with log10 (GI50) within 0.5 SDs were defined as intermediate in the 
range of drug responses.  We summarized the chemosensitivity profiles of each cancer 
type using this cutoff (0.5 SDs) by averaging the profiles on the cell lines for each cancer 
type in the NCI-60 lines (Figure 1).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

0
10
20
30
40
50
60
70
80
90

O
va

ria
n

 B
re

as
t

Co
lo

n

M
el

an
om

a

Lu
ng

Pr
os

ta
te

Ki
dn

ey

CN
S

Le
uk

em
ia

Cancer Type

N
um

be
r 

of
 D

ru
gs

Sensitive Intermediate Resistant

Figure 1. Chemosensitivity profiles of different cancer types (using 0.5 SDs) 
 

We also used 0.6 SDs to define drug responses of the 60 cell lines (Figure 2). 

 3



0
10
20
30
40
50
60
70
80
90

M
el

an
om

a

 L
un

g

CN
S

Co
lo

n

O
va

ria
n

Le
uk

em
ia

Ki
dn

ey

Pr
os

ta
te

Br
ea

st

Cancer Type

Nu
m

be
r 

of
 D

ru
gs

Sensitive Intermediate Resistant

   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Chemosensitivity profiles of different cancer types (using 0.6 SDs) 
 
 

In the previous study of Stuanton et al.(3), 0.8 SDs were used to define the cutoff 
thresholds for drug responses.  The reason is that Stuanton et al.(3) screened thousands of 
chemical compounds, many of which have not yet been approved as anti-cancer drugs.  
Using 0.8 SDs is appropriate to reflect the wide range of drug activities of these chemical 
compounds.  On the other hand, the 118 drugs analyzed in our study are either approved 
or potential anti-cancer drugs, which have a narrower range of drug activities in the NCI-
60 lines.  Therefore, using 0.8 SDs as cutoff thresholds results in unbalanced datasets, the 
majority of which are cases with the label intermediate (Figure 3).  As a result, the 
machine learning algorithms tend to maximize the accuracy of the intermediate cases 
during the learning in order to achieve higher overall accuracy in generating prediction 
models for chemosensitivity.  As a tradeoff, the prediction accuracy for the cases with the 
label sensitive or resistant is therefore low, which might pose serious problems in the 
clinical applications.  For instance, the response of most patients who are actually 
sensitive or resistant to certain chemotherapeutic agents will be predicted as intermediate.  
Consequently, these patients might not be given the appropriate chemotherapy regimens.  
It is thus necessary to construct the classifiers that give highly accurate prediction results 
on balanced datasets.  In general, statistical tests are employed to evaluate the overall 
accuracy of the constructed classifiers.  However, the dilemma caused by heavily 
unbalanced datasets described above cannot be revealed using statistical tests such as a 
non-parametric test.  We sought to explore different cutoff thresholds to define drug 
responses to construct chemosensitivity prediction models that achieve the optimal 
prediction accuracy in the complete range of drug responses.   
   

 4



0
10
20
30
40
50
60
70
80
90

M
el

an
om

a

 L
un

g

CN
S

Co
lo

n

O
va

ria
n

Le
uk

em
ia

Ki
dn

ey

Pr
os

ta
te

Br
ea

st

Cancer Type

Nu
m

be
r o

f D
ru

gs

Sensitive Intermediate Resistant 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
el

an
om

a

 L
un

g

CN
S

Co
lo

n

O
va

ria
n

Le
uk

em
ia

Ki
dn

ey

Pr
os

ta
te

Br
ea

st

Cancer Type

In
te

rm
ed

ia
te

 %

0.5 SDs 0.6 SDs 0.8 SDs

Figure 3. Chemosensitivity profiles of different cancer types (using 0.8 SDs) 

e observed that using 0.6 SDs and 0.8 SDs resulted in unbalanced datasets with the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Comparing intermediate range of drug responses in different cancer types 

 
 
W
majority of cases defined as intermediate in the range of drug responses.  Figure 4 shows 
the percentage of the intermediate labels for each cancer type in the NCI-60 lines.  As 
mentioned above, heavily unbalanced datasets generally entail unbalanced prediction 
error rates in supervised classification.  The machine learning algorithms tend to 
minimize the overall prediction error rate by “sacrificing” the error rates of minority class 
labels.  In our case, if sensitive and resistant are minority labels, these cases (cell lines) 
are more possible to be predicted as intermediate as a result.  Such prediction models will 
cause serious problems in clinical context, although they might have favorable overall 
prediction accuracy.  The results indicate that using 0.5 SDs is feasible for defining drug 
responses of the NCI-60 lines to the 118 anti-cancer drugs.    

 5



3 Constructing Optimal Classifiers 
 

3.1   Experiments Using Random Forests  

For each uding 52 protein variables and 
 drug response variable. The 52 protein expression variables are predictors, while the 

 
drug, we can form a dataset with 53 variables incl

1
drug response is the predicted variable.  The goal of this study is to predict the response 
of each cell line to the 118 anti-cancer drugs.  For each drug, the number of the cell lines 
is at most 60 (because of the missing values, some drugs were tested with fewer cell 
lines). Compare to the sample size, the number of features (i.e. proteins) is relatively 
large. Some of these proteins might not be very informative in discriminating between 
classes.  Thus, our first task is to remove the non-informative proteins.  The goal is to 
filter out proteins step by step and ultimately, to obtain a subset of features with the 
smallest number of proteins and the optimal prediction accuracy of drug responses.  
 
We used Random Forests (4) in software package R (http://www.r-project.org) as a 
lassification technique, which can also rank the importance of the features in prediction.  

ed in terms of the contribution to prediction accuracy (5). 
d in software package R provides two 

ariable for the “out-of-bag” set, put this permuted 

• 
y gini index) in the forest due to this variable, 

 
In this study, we ranked the proteins by using the “mean decrease in accuracy” method 

f random forests.  An initial run was made on the full list of proteins and a ranking of 

c
Random forests involve the generalization of the classification tree algorithm.  Instead of 
growing a single classification tree, the random forest algorithm constructs an ensemble 
of hundreds or thousands of trees.  Each tree is built upon a bootstrap sample from the 
original learning set.  The variables used for splitting the tree nodes are a random subset 
of the whole variables set.  All trees are grown to full length without pruning. The 
classification decision of a new instance is obtained by majority voting (unless the cutoff 
is user-defined) over all trees.  
  
The variable importance is defin
The Random Forest algorithm implemente
importance measures: “mean decrease in accuracy” and “mean decrease in gini”.  In 
random forests, about one-third of the cases in the bootstrap sample are not used in 
growing the tree.  These cases are called “out-of-bag” cases, which play an important role 
in algorithm performance evaluation.   

• Mean decrease in accuracy is defined as follows. For each tree, randomly 
rearrange the values of the mth v
set down the tree, and get new classifications for the forest.  The importance of 
the mth variable can be defined in “mean decrease in accuracy” as the difference 
between the “out-of-bag” error rate for randomly permuted mth variable and the 
original “out-of-bag” error rate.  
In “mean decrease in gini”, the importance of the mth variable is the sum of all 
decreases in impurity (measure b
normalized by the number of trees. Usually, these two measures produce 
consistent results.  

o
the importance of all 52 proteins was obtained.  In order to construct the optimal 
classifiers, the following procedure was performed: for each drug, the lowest ranking 

 6



proteins were sequentially removed.  The bottom 2 proteins were first removed and a 
subset of top 50 proteins was used for the prediction.  Then, the bottom 5 proteins were 
removed from the prediction model each time.  When the subset contained 10 proteins, 
the bottom 1 protein was removed each time.  In this study, the smallest subset consisted 
of 3 proteins.  Together, the random forest algorithm was run 16 times based on these 
different subsets of variables.  The prediction accuracy along with the protein list was 
recorded.  The optimal classifier is the one with the smallest number of proteins and the 
highest prediction accuracy.   
 
The random forest algorithm uses the out-of-bag method to evaluate the prediction 
ccuracy.  The out-of-bad method is unbiased, and therefore there is no need to perform 

Severa g  by using random forests.  To 
entify the optimal classifiers, we used several methods implemented in WEKA 

a
cross-validation or use a separate dataset to evaluate the results (4). 
 

3.2 Experiments Using WEKA Learners  
 

l dru s had relatively low prediction accuracies
id
(http://www.cs.waikato.ac.nz/ml/weka/) (6).  We focused on the drugs with the prediction 
accuracy below 50% by using random forests.    
 
For these drugs, we used the Relief method as a filter to rank the proteins.  Relief 
valuates the importance of a variable by repeatedly sampling an instance and checking 

nd the one generating the 
ighest prediction accuracy was selected to construct the optimal classifiers.  Nearest 

oss 
alidation.   In the 10-fold cross validation, the data set was randomly partitioned into 10 

e
the value of the given variable for the nearest instance from the same and different 
classes.  The values of the attributes of the nearest neighbors are compared to the sampled 
instance and used to update the relevance scores for each attribute.  The rationale is that 
an informative attribute should have the same value for instances from the same class and 
differentiate between instances from different classes (6, 7).   
 
Several WEKA classifiers were explored for each drug, a
h
neighbor methods (IB1 and NNge) performed best among the WEKA classifiers in this 
study (data not known).   IB1 is a basic instance-based learner.  It uses normalized 
Euclidean distance to find the training instance closest to the given test instance, and 
predicts the same class as this training instance. NNge is a nearest-neighbor method for 
generating rules using nonnested generalized exemplars, which are rectangular regions of 
instance space used for calculating a distance function to classify new instances (6).   
 
The prediction accuracy by the WEKA classifiers was evaluated using 10-fold cr
v
folds of equal size with possible exception of the last fold (the last fold contains the 
remaining samples).  The prediction models were trained and tested 10 times.  Each time, 
9 folds were picked to build the prediction model, while the remaining fold was validated 
on the prediction model.  We used 10-fold cross validation to evaluate the prediction 
models in this study, because the estimation accuracy by this validation method has been 
proven to have the lowest bias and variance among all validation methods, including the 

 7

http://www.cs.waikato.ac.nz/ml/weka/


leave-one-out method (8).   It thus provides an objective evaluation of the performance of 
our prediction models in general. 
 
F

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90

Prediction accuracy (%)

N
um

be
r o

f d
ru

gs
or each drug in the experiment, the bottom one protein was removed at a time, and a 

he performance, protein predictors, algorithms, and software used in the identified 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Prediction accuracy of the constructed optimal classifiers 
  

  Assessing the Significance of Our Prediction Results 

emonstrate that our prediction results are significantly better than random prediction.  

WEKA classifier was run on the new feature set to get the prediction accuracy.  The 
process was repeated until only one protein was left.  We then identified the optimal 
classifier with the highest prediction accuracy along with the protein predictors for each 
drug.  Using the WEKA techniques, the results were significantly improved for four 
drugs: Clomesone (NSC: 338947), Camptothecin,10-OH (NSC: 107124), 
Camptothecin,20-ester (S) (NSC: 606985), and Floxuridine (FUdR) (NSC: 27640). 
 
T
optimal classifiers are listed in file Chemo.2table2.xls.  The distribution of the prediction 
accuracy of the constructed optimal classifiers is shown in Figure 5. 
 

 

4
 
In order to assess the significance of our prediction results (Figure 5), it is necessary to 
d
Two methods were used for the purpose.  In the first method, for each drug we 
maintained the original class distributions and randomly permuted the class labels.  For 
instance, a drug is examined on 60 cell lines, and the first 18 are labeled as 
“intermediate”, the next 23 as “resistant”, and the last 19 as “sensitive”.  Random 
permutation produces 60 class labels, while keeping the class distribution fixed (18 
intermediate, 23 resistant, and 19 sensitive).  Using this method, the matches between the 
rearranged class labels and the original ones were recorded.  The percentage of matches 
was calculated as the accuracy measure for random prediction.  Repeating this procedure 
1000 times generated 1000 accuracies.  The P value was calculated as the upper 
percentile of our prediction accuracy in the profile of 1000 random prediction results.  If 

 8



the prediction accuracy produced by our classifier exceeds the 95th percentile of those 
1000 random prediction accuracies, it is concluded that our prediction is significantly 
better than random prediction (P < 0.05).   The results of method 1 are listed as follows 
(Figure 6). 
 
P-value 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.019 
Frequency 97 9 4 1 1 3 1 1 1 

0

20

40

60

80

100

N
um

be
r o

f D
ru

gs

120

0
0.001

0.002
0.003

0.004
0.005

0.006
0.007

0.019

P Value

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 6. Histogram of P-values generated from method 1 
 

he second method used in this study differs from the first in that the original class 
istributions were not fixed.  For each cell line, we randomly assigned a label to it.  It is 

P-value 0 0.001 0.002 0.005 0.006 0.008 

 

 
T
d
analogous to drawing a ball from a box containing three balls labeled with “I” 
(Intermediate), “R” (Resistant) and “S” (Sensitive), and then assigning the label to this 
cell line.  Using this method, the random prediction was compared with the true label and 
the overall accuracy across the 60 cell lines was calculated.  This process was repeated 
for 1000 times and the P value was calculated the same way as described above.  The 
results using method 2 are listed as follows (Figure 7).  Using the second method, our 
prediction results were more significant than using the first one.  The reason is that some 
drugs had very unbalanced chemosensitvity profiles.  Therefore, keeping the class 
distributions as in the first method can take it into account.  Thus, we chose to use the 
first method to evaluate our prediction results.  
 
 

Frequency 105 7 2 1 2 1 
 
 

 9



 

0

20

40

60

80

100

Nu
m

be
r 

of
 D

ru
gs

120

0 0.001 0.002 0.005 0.006 0.008

P Value

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Histogram of P-values generated from method 2 
 
 

 Programming Source Code  

eriments 

 our study, we ranked the protein by use of “mean decrease in accuracy” (please refer 
 man f the source codes used in 
ftware package R.  

###################################### 
 important proteins using random forests            # 

##################################################### 

 initialize a matrix which will store the out-of-bag error rates 

r(i in 1:118)  # 118 drugs 

l line for drug i 

"missing" # check if any cell line has missing value 

newresp <- resp[resptest]  

5
 
 
  5.1   R Code for Random Forests Exp
 
In
to uscript for details). The following is the major part o
so
 
 
################
 Identify the top 10#

#
 
# initialize a matrix which will store the prediction (result) for each drug (row) 
pick10.pred <- matrix(0, ncol = 3, nrow = 118)  
 

 initialize a matrix which will store the information on “which protein is picked” (TRUE) #
pick10 <- matrix(0, ncol = 52, nrow = 118)  
 
#
drug.error <- c()   
 
fo
{ 

w of label contains the class labels of cel resp <- label[i,]  # the ith ro
 
 resptest <- resp != 
 
 # remove cell lines which have missing value(s) 
 

 10



 
 drugi <- single.drug[resptest, ] 

ewresp) # form the data frame 

teins with importance measurements calculated  
drugi.rf <- randomForest(x = drugi[,1:52], y = drugi[,53], ntree = 600, importance = TRUE) 

# obtain the mean decrease in accuracy 

# pick the 10 most important (measured by importance scores) proteins  

pick <- pick >= q 

k] 

e(drugi2[,1:10], newresp) 

st(newresp ~ ., data = drugi, ntree = 200) #run RF on the 10 proteins 

ce a few drugs do not have any sensitive samples 
tmp <- dim(drugi.rf$confusion)[2]  

if(tmp==4){ 

 pick10.pred[i, ] <- c(drugi.rf$confusion[,3],"NA")} 

5.2   C++ Code for Assessing the Significance of Our Prediction 
esults  

ompared with random prediction using two methods. 

include <time.h>  
  

 file 
\\file.txt"); //open input file,which is the Drug activity  

                                     //data of 118 "Mechanism of Action" drugs with the avg and dev of 60 cell lines 

 
 drugi <- data.frame(drugi, n
 
 # run RF on the whole list of pro
 
 
 
 pick <- drugi.rf$importance[,4] 
 
 
 q <- quantile(pick, 0.81) 
 
 
 
 pick10[i,] <- pick 
 
 drugi2 <- drugi[,pic
 
 drugi <- data.fram
 
 drugi.rf <- randomFore
 
 # check the dimension of confusion matrix sin
 
 
 
  pick10.pred[i, ] <- drugi.rf$confusion[,4]} 
 else{ 
 
 
 drug.error[i] <- drugi.rf$err.rate[600,1] 
} 
 
 

 
 
 
R
 
The following shows the C++ codes for assessing the significance of our prediction 
results as c
 
/////////////////////////////////////////////////////////////////////// 

// Method 1: keep original class distribution ///     
///////////////////////////////////////////////////////////////////// //

 
// compute p-value 
#include<iostream.h>  
#include <conio.h>  
#
#include<fstream.h>
#include <stdlib.h>  
 
void main() { 
 //step 1: origin
 ifstream in("c:
  
 
 if (in.fail())  
     cout<<"cannot open input file"<<endl;  

 11



             float text[119][63]; //put the original data from the input file into an array. 
 int text2[119][61];//change origin data to labels according 0.5 SD 

1; 

(in.get()=='\n') { 
  j++; 

   i=0; 
} 

.txt"); //open input file, which is the predictions by "random forests" 

if (in2.fail())  
pen input file"<<endl;  

j=1; 

      in2>>text4[j][i]; 

 if (in2.get()=='\n') { 
  j++; 

i=0; 
} 

for (i=1;i<=118;i++){ 
 for(j=1;j<=14;j++){ 

t4[i][j]>text5[i]) 
   text5[i]=text4[i][j]; 

//step 2: we assign the labels: sensitive 0; intermediate 1; resistant 2; 

ofstream out("c:\\pvalue2_3.txt"); //open output file 

    cout<<"cannot open output file"<<endl;  
for(i=1;i<=118;i++) { //118 drugs 

drug 
if(text[i][j]<(text[i][61]-text[i][62]*0.5))  

xt[i][61]+text[i][62]*0.5) && text[i][j]<500) 

62]*0.5 && 

[i][j]=

 int i=0;int j=
 float text4[119][15];//origin predication 
 float text5[119]={0};//store the predications of "random forests" 
  
    while(!in.eof()) 
    { 

in>>text[j][i]; 
     i++; 
  if 
 

  
    } 
 
 in.close(); 
 ifstream in2("c:\\file2
 
 
     cout<<"cannot o
 i=0; 
 
 
 while(!in2.eof())    
    { 
 
  
     i++; 
 
 
   
  
    } 
 
 in2.close(); 
 
 
 
   if(tex
 

} 
 } 
 
 

 
 
 
 if (out.fail())  
 
 
  for(j=1;j<=60;j++) { //60 cell lines for each 
   
    text2[i][j]=0; 
   else if(text[i][j]>(te
    text2[i][j]=2; 
   else if(text[i][j]>text[i][61]-text[i][
text[i][j]<text[i][61]+text[i][62]*0.5) 
    text2[i][j]=1; 
   else if(text[i][j]==999) 
    text2 4; 
  } 
 } 
 
 

 12



//step 3: get the random predictions 

 int l; 
 float result=0.0; 

lue[119];     //array to store numbers of random predictions that are bigger than  
            //prediction by "random forests" 

9];  //array to store pvalue 

; 

( NULL ) ); //change random seed  
   for(i= ;i++){//loop of 118 drugs 

<<"rowno"<<i<<"----------------------------------------------------"<<"\n"; 
k=1;k<=1000;k++) {// loop of 1000 times for each drug 

%60+1; 
n=1;n<j;n++){ 

=neworder[n]){ 
flag=0; 

    } 

dom order of the //original labels 

   for(l=1;l<=60;l++){// if random labels is the same with  

     if(text2[i][l]==text2[i][neworder[l]]&&text2[i][l]!=4) 

 

xt5[i]) 
    p++; 

f random predictions that are  
ediction by "random forests" 

value 

  out<< <" lue 

 
 

///////////////////////////////////////////////////////////////////////////////////////// 

 Method 2: random generate class label for each sample ///     
////////////////////////////////////////////////////////////////////////////////////////// 

  int k=0; 
 
 
  float avg=0.0; 
  float p_va
           
  float p_number[11
  float p=0.0; 
  int neworder[61]; 
  i=0
  int flag; 
  int temp; 
  
     srand( (unsigned)time
  1;i<=118
    out<<"  "
   for(
    for(j=1;j<=60;j++){ 
    flag=0; 
     while(flag==0){ 
      flag=1; 
      temp=rand()
      for (int 
      if (temp=
       
 
       break; 
      } 
      } 
 
 
    neworder[j]=temp;// get ran
    } 
 
 
          //original file, we add 1 to result. 
 
 
     result+=1; 
    }
 
    avg=result/60;// random prediction accuracy for 1 drug //at a time 
       out<<avg<<"\n"; 
    if(avg>=te
 
    result=0; 
   }  
   p_number[i]=p; // store numbers o
               //bigger than pr
   p_value[i]=p/1000;//store p

  p=0.0; 
 
   i< "<<text[i][0]<<" "<<p_value[i]<<"\n";//output //pva
  } 

 out.close(); 
}
 
 
 
///

//
//
 
#include<iostream.h>  
#include <conio.h>  

 13



#include <time.h>  
#include<fstream.h>  

in file 
ed)time( NULL ) ); //change random seed 

:\\file.txt");   //open input file, which is the drug activity data of 118 "Mechanism of 
   //Action" drugs with the avg and dev of 60 cell lines 

oat tex 119][63 ; //put 

][61];//change origin data to labels according 0.5 SD 

float text5[119]={0};//store the predications of "random forests" 

    i++; 
(in.get()=='\n') { 

  j++; 
   i=0; 

} 

ifstream in2("c:\\file2.txt"); //open input file, which is the predictions by "random forests" 
if (in2.fail())  

pen input file"<<endl;  

))    
  { 
      in2>>text4[j][i]; 

)=='\n') { 
  j++; 

i=0; 
} 

){ 
 for(j=1;j<=14;j++){ 
  if(text4[i][j]>text5[i]) 

text5[i]=text4[i][j]; 

ant 2; 

118;i++) { //loop of 118 drugs 
 for(j=1;j<=60;j++) { //loop of 60 cell lines for each drug 

0.5))  
   text2[i][j]=0; 

]+text[i][62]*0.5) && text[i][j]<500 ) 

  

   else if (text[i][j]==999) 

#include <stdlib.h>  
void main() { 
 //step 1: orig
  srand( (unsign
 ifstream in("c
  
 
 if (in.fail())  
     cout<<"cannot open input file"<<endl;  
 fl t[ ] the original data from the input file into a array. 
 
 int text2[119
 int i=0;int j=1; 
 float text4[119][15];//origin predication 
 
 
    while(!in.eof()) 
    { 

   in>>text[j][i]; 
 
  if 
 

  
    } 
 
 in.close(); 
 
 
 
     cout<<"cannot o
 
 i=0;j=1; 
 while(!in2.eof(
  
  
     i++; 
  if (in2.get(
 
   
  
    } 
 
 in2.close(); 
 for (i=1;i<=118;i++
 
 
    
  } 
 } 
 
//step 2: we assign the labels: sensitive 0; intermediate 1; resist
 
 for(i=1;i<=
 
    if(text[i][j]<(text[i][61]-text[i][62]*
 
   else if(text[i][j]>(text[i][61
    text2[i][j]=2; 
   else if(text[i][j]>text[i][61]-text[i][62]*0.5 &&   
 text[i][j]<text[i][61]+text[i][62]*0.5) 
 
    text2[i][j]=1; 

 14



    text2[i][j]=4; 
  } 
 } 

 predictions 
ut("c:\\pvalue.txt"); //open output file 

if (out.fail())  
    cout<<"cannot open output file"<<endl;  

 float result=0.0; 
; 

s of random predictions that are bigger than  
       //prediction by "random forests" 

9];//array to store pvalue 
random labels by compputer 

rests" 
; 

   
   for(i=

----------------------------------------"<<"\n";  

 for(j=1;j<=60;j++){ 
   text3[j]=rand()%3; 

]==text3[j]) 

acy for 1 drug 1 time 
   

+; 
result=0; 

f random predictions that are bigger than prediction 
ts" 

value 

 
 
 
//step 3: we get the random
 ofstream o
 
 
 
 
  int k=0; 
 
  float avg=0.0
  float p_value[119];  //array to store number
 
 
  float p_number[11
  int text3[61];// 
  float p=0.0;//numbers of random predictions that are bigger than prediction by "random fo
  i=0
  
  1;i<=118;i++){//loop of 118 drugs 
   out<<"  "<<"rowno"<<i<<"------------
   for(k=1;k<=1000;k++) {// loop of 1000 times for each drug 
   
 
    if(text2[i][j
    result+=1; // if random labels is the same with original file,  
      //we add 1 to result. 
    } 
   
    avg=result/60;// random prediction accur
   
    if(avg>=text5[i]) 
     p+
    
   }  
 
   p_number[i]=p; // store numbers o
by     //"random fores
   p_value[i]=p/1000;//store p
   p=0.0; 
 
      out<<i<<" "<<text[i][0]<<" "<<p_value[i]<<"\n";//output pvalue  
  } 
  out.close(); 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 15



6 References  

 1.  Nishizuka S, Charboneau L, Young L, et al. Proteomic profiling of the NCI-60 
sing new high-density reverse-phase lysate microarrays. 
.S.A 2003;100:14229-34. 

 3.  Staunton JE, Slonim DK, Coller HA, et al. Chemosensitivity prediction by 

 4.  Breiman L. Random Forests. Machine Learning 2001;45:5-32 . 

 5.  Chapman & 
Hall/CRC, 2003. 

 6.  Witten IH, Frank E. Data Mining: Practical Machine Learning Tools and 

 7.  Hall MA, Holmes G. Benchmarking Attribute Selection Techniques for Discrete 

-43. 

 

 

cancer cell lines u
Proc.Natl.Acad.Sci.U

 2.  Scherf U, Ross DT, Waltham M, et al. A gene expression database for the 
molecular pharmacology of cancer. Nat.Genet. 2000;24:236-44. 

transcriptional profiling. Proc.Natl.Acad.Sci.U.S.A 2001;98:10787-92. 

Speed T. Statistical Analysis of Gene Expression Microarray Data. 

Techniques (2nd Edition) . Morgan Kaufmann, 2005. 

Class Data Mining. IEEE Transactions on Knowledge and Data Engineering 
2003;15. 

 8.  Kohavi R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and 
Model Selection. International Joint Conference on Artificial Intelligence (IJCAI) 
1995;1137

 

 16


	Data Sets Description
	Defining Cutoffs for Drug Sensitivity and Resistance
	Constructing Optimal Classifiers
	Assessing the Significance of Our Prediction Results
	Programming Source Code
	References

