Induction of retinoid X receptor activity and consequent up-regulation of $\mathbf{p} 21^{\text {WAF1/CIP1 }}$ by indenoisoquinolines in MCF7 cells

Eun-Jung Park ${ }^{1}$, Tamara P. Kondratyuk ${ }^{1}$, Andrew Morrell ${ }^{2}$, Evgeny Kiselev ${ }^{2}$, Martin CondaSheridan ${ }^{2}$, Mark Cushman², Soyoun Ahn ${ }^{3}$, Yongsoo Choi ${ }^{3}$, Jerry J. White ${ }^{3}$, Richard B. van Breemen ${ }^{3}$, and John M. Pezzuto ${ }^{1 *}$

Supplementary Method S1.
3-Amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2c]isoquinoline dihydrochloride (3).

Method A. Triethyl phosphite ($0.09 \mathrm{ml}, 0.54 \mathrm{mmol}$) was added to a solution of 4 (75 $\mathrm{mg}, 0.217 \mathrm{mmol}$) in benzene (25 ml) and the reaction mixture was heated at reflux for 16 h . The reaction mixture was allowed to cool to room temperature, 3 M HCl in methanol (10 ml) was added, and the reaction mixture was heated at reflux for 2 h . The reaction mixture was allowed to cool to room temperature and the precipitate was filtered to provide a brick-red solid ($0.075 \mathrm{~g}, 88 \%$): $\mathrm{mp} 232^{\circ} \mathrm{C}$ (dec). IR (KBr, cm ${ }^{-1}$) 3427, 2927, 1658, $1510 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 8.42$ (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.95 (bs, 3 H), 7.46 (d, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.65(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.97-2.96 (m,2 H), 2.13-2.08 (m, 2 H); positive ESIMS m/z (rel intensity) $320\left(\mathrm{MH}^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 58.17 ; \mathrm{H}, 4.88 ; \mathrm{N}, 10.71$. Found: C, 58.38; H, 5.05; N, 10.38.

Method B. A solution of ammonium chloride ($15 \mathrm{ml}, 10 \%$ in water) was added at room temperature to a mixture of compound $2(5.9 \mathrm{~g}, 15.7 \mathrm{mmol})$, iron powder ($8.8 \mathrm{~g}, 0.16$ $\mathrm{mol})$, ethanol $(150 \mathrm{ml})$ and water $(50 \mathrm{ml})$. The resulting mixture was heated at reflux for 3 h . The mixture was allowed to cool to room temperature and a solution of potassium hydroxide $(5 \mathrm{~g})$ in ethanol (50 ml) was added. The resulting mixture was heated at reflux and filtered while hot. The precipitate was washed on a filter with hot ethanol ($3 \times 50 \mathrm{ml}$). The combined filtrates were concentrated to 100 ml under reduced pressure and diluted with water (300 ml). The resulting dark-purple solution was extracted with chloroform (7×100 $\mathrm{ml})$. The combined extracts were washed with brine (100 ml), dried with sodium sulfate, and evaporated to dryness under reduced pressure. The crude dark-purple product was recrystalized four times from methanol. The solid obtained after recrystalization was suspended in benzene (200 ml) and 2 M HCl in methanol (20 ml) was added at room temperature. The resulting mixture was heated at reflux. The newly formed orange
precipitate was collected by filtration, washed with chloroform ($3 \times 30 \mathrm{ml}$), ether (50 ml) and dried to yield the desired product $3(3.5 \mathrm{~g}, 60 \%)$: mp $234-236^{\circ} \mathrm{C}(\mathrm{dec})$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3430$, 2927, 2584, 1659, 1511; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 8.39$ (d, J = $9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (s, 3 H), 7.69-7.33 (m, 6 H$), 4.52(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 2.09$ (pent, J = $6 \mathrm{~Hz}, 3 \mathrm{H}$); positive ESIMS m/z (rel intensity) $320\left(\mathrm{MH}^{+}, 100\right), 303$ (64).

3-Amino-6-(3-azidopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-

c]isoquinoline (4). Sodium azide ($86 \mathrm{mg}, 1.328 \mathrm{mmol}$) and 19 ($150 \mathrm{mg}, 0.443 \mathrm{mmol}$) were diluted with dimethylsulfoxide (40 ml) and heated at $100^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was diluted with chloroform (100 ml), washed with water ($3 \times 30 \mathrm{ml}$), brine (30 ml), and dried over sodium sulfate. The solution was concentrated to provide a crude solid that was purified by flash column chromatography (silica gel), eluting with a gradient of chloroform-1\% triethylamine to 3% methanol-chloroform-1\% triethylamine, to provide a brown-purple solid ($88 \mathrm{mg}, 58 \%$): $\mathrm{mp} 175-178^{\circ} \mathrm{C}$ (dec). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3350,2103,1642,1578,1517 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 8.28$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.66 ($\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.52-7.45 $(\mathrm{m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, \mathrm{J}=8.7 \mathrm{~Hz}$ and 2.5 Hz , 1 H), 5.78 (s, 2 H), 4.52-4.47 (m, 2 H), 3.62 (t, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.02-1.98 (m, 2 H); negative ion ESIMS m/z (rel intensity) 344 [(M-H) $\left.{ }^{-}, 55\right]$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}$: C , 66.08; H, 4.38; N, 20.28. Found: C, 65.89; H, 4.31; N, 20.00.

3-Amino-6-methyl-5H-indeno[1,2-c]isoquinoline-5,11(6H)-dione dihydrochloride

(5). A solution of ammonium chloride ($1 \mathrm{ml}, 10 \%$ in water) was added at room temperature to a mixture of 5,6 -dihydro-6-methyl-3-nitro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline (27) ($487 \mathrm{mg}, 1.6 \mathrm{mmol}$), iron powder ($450 \mathrm{mg}, 8 \mathrm{~mol}$), ethanol (10 ml) and water (5 ml). The resulting mixture was heated at reflux for 3 h . The mixture was allowed to cool to room temperature and a solution of potassium hydroxide (0.5 g) in ethanol (5 ml) was added. The resulting mixture was heated at reflux and filtered while hot. The precipitate was washed on a filter with hot ethanol $(3 \times 10 \mathrm{ml})$. The combined filtrates were concentrated to 10 ml under reduced pressure and diluted with water (20 ml). The resulting dark-purple solution was extracted with chloroform ($5 \times 10 \mathrm{ml}$). The combined extracts were washed with brine (20 ml), dried with sodium sulfate and evaporated to dryness under reduced pressure. The crude dark-purple product was purified by column chromatography (silica gel), eluting with 3% methanol-chloroform to yield the desired product 5 ($400 \mathrm{mg}, 90 \%$): mp $266-268^{\circ} \mathrm{C}$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3452,3362,3247,1693,1578,1517,1455,1429,1319 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H})$, 7.10 (d, J = $6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.03 (s, 3 H); positive ESIMS m/z (rel intensity) $277\left(\mathrm{MH}^{+}, 100\right)$; HPLC purity: 97.87\% (C-18 reverse phase, $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 90: 10$); 97.07\% (C-18 reverse phase, $\mathrm{MeOH}, 100$).

3-(5,11-Dioxo-5H-indeno[1,2-c]isoquinolin-6(11H)-yl)propyl 4-methylbenzenesulfonate (12). A solution of $21(150 \mathrm{mg}, 0.49 \mathrm{mmol}), 4-m e t h y l b e n z e n e-1$-sulfonyl chloride ($187 \mathrm{mg}, 0.98 \mathrm{mmol}$), 4-dimethylaminopyridine ($12 \mathrm{mg}, 0.1 \mathrm{mmol}$), and triethylamine (0.1 ml , 0.74 mmol) in dichloromethane (10 ml) was stirred at room temperature for 14 h . The resulting mixture was further diluted with dichloromethane (50 ml), washed with saturated sodium bicarbonate ($3 \times 25 \mathrm{ml}$), brine (25 ml), dried with sodium sulfate and evaporated under reduced pressure. The residue was subjected to flash column chromatography (silica gel), eluting with chloroform, to obtain pure 12 ($31 \mathrm{mg}, 15 \%$): $\mathrm{mp} 175-177^{\circ} \mathrm{C}$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1696,1671,1505 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.81 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.76-7.62 (m, 3 H), 7.49-7.34 (m, 5 H) 4.58 (dd, J $=9.9,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.46,(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H})$; positive ESIMS m/z (rel intensity) 288 (100). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 67.96 ; \mathrm{H}, 4.61 ; \mathrm{N}, 3.05$. Found: C, 67.65; H, 4.76; N, 7.07.

4-(5,11-Dioxo-5H-indeno[1,2-c]isoquinolin-6(11H)-yl)butyl 4-methylbenzenesulfonate (13). A solution of 22 ($109 \mathrm{mg}, 0.34 \mathrm{mmol}$), 4-methylbenzene-1-sulfonyl chloride ($130 \mathrm{mg}, 0.68 \mathrm{mmol}$), 4-dimethylaminopyridine ($8 \mathrm{mg}, 0.07 \mathrm{mmol}$), and triethylamine (0.1 ml , 0.74 mmol) in dichloromethane (10 ml) was stirred at room temperature for 48 h . The resulting mixture was further diluted with chloroform (100 ml), washed with saturated sodium bicarbonate ($3 \times 25 \mathrm{ml}$), brine (25 ml), dried with sodium sulfate and evaporated under reduced pressure. The residue was subjected to flash column chromatography (silica gel), eluting with chloroform. The orange solid obtained after flash column chromatography was washed with ethyl ether to yield pure 13 ($117 \mathrm{mg}, 74 \%$): mp $159-163^{\circ} \mathrm{C}$. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 1694, 1665, 1612, 1504; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.30 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78-7.70 (m, 3 H), 7.64 (d, J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.50-7.38 (m, 4 H), 7.31 (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $4.52(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 4$ H); positive ESIMS m/z (rel intensity) 496 ($\mathrm{MNa}^{+}, 100$), 302 (66). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 68.48 ; \mathrm{H}, 4.908 ; \mathrm{N}, 2.96$. Found: C, 68.13; H, 4.93; N, 2.90.

5-(5,11-Dioxo-5H-indeno[1,2-c]isoquinolin-6(11H)-yl)pentyl 4-methylbenzenesulfonate (14). A solution of $23(125 \mathrm{mg}, 0.38 \mathrm{mmol}), 4$-methylbenzene-1-sulfonyl chloride ($143 \mathrm{mg}, 0.75 \mathrm{mmol}$), 4-dimethylaminopyridine ($9 \mathrm{mg}, 0.075 \mathrm{mmol}$), and triethylamine (0.1 $\mathrm{ml}, 0.74 \mathrm{mmol})$ in dichloromethane (10 ml) was stirred at room temperature for 48 h . The resulting mixture was further diluted with chloroform (100 ml), washed with saturated sodium bicarbonate ($3 \times 25 \mathrm{ml}$), brine (25 ml), dried with sodium sulfate and evaporated under reduced pressure. The residue was subjected to flash column chromatography (silica gel) eluting with chloroform. The orange solid obtained after flash column chromatography was washed with ethyl ether to yield pure 14 ($110 \mathrm{mg}, 60 \%$): mp $164-166^{\circ} \mathrm{C}$. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$

1693, 1655, 1611, 1549, 1503; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.79-7.72 (m, 3 H), 7.49-7.38 (m, 4 H), 7.32 (d, J = $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.48 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.07 (t, J = $6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.43 ($\mathrm{s}, 3 \mathrm{H}$), $1.90-1.74$ (m, 4 H), 1.64-1.59 (m, 2 H); positive ESIMS m/z (rel intensity) $488\left(\mathrm{MH}^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}$, 68.98; H, 5.17; N, 2.87. Found: C, 68.71; H, 5.00; N, 2.77.

5-(5,11-Dioxo-5H-indeno[1,2-c]isoquinolin-6(11H)-yl)hexyl 4-methylbenzenesulfonate (15). A solution of $\mathbf{1 6}(100 \mathrm{mg}, 0.38 \mathrm{mmol}), 4$-methylbenzene-1-sulfonyl chloride $(110 \mathrm{mg}, 0.58 \mathrm{mmol})$, 4-dimethylaminopyridine ($7 \mathrm{mg}, 0.058 \mathrm{mmol}$), and triethylamine (0.08 $\mathrm{ml}, 0.58 \mathrm{mmol})$ in dichloromethane (10 ml) was stirred at room temperature for 24 h . The resulting mixture was further diluted with chloroform (50 ml), washed with saturated sodium bicarbonate ($3 \times 25 \mathrm{ml}$), brine (25 ml), dried with sodium sulfate and evaporated under reduced pressure. The residue was subjected to flash column chromatography (silica gel), eluting with chloroform to yield pure 15 ($110 \mathrm{mg}, 60 \%$): $\mathrm{mp} 145-147^{\circ} \mathrm{C}$. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 1689, 1660, 1611, 1550, 1503; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.32 (dd, J = 8.1, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.80-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.32(\mathrm{~m}, 6 \mathrm{H})$, $4.48(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H})$, 1.50-1.47 (m, 4 H); positive ESIMS m/z (rel intensity) 502 ($\mathrm{MH}^{+}, 100$). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{3}$: C, 69.44; H, 5.43; N, 2.79. Found: C, 68.71; H, 5.34; N, 2.78.

6-(6-Hydroxyhexyl)-5H-indeno[1,2-c]isoquinoline-5,11(6H)-dione (16). A mixture of 20 ($300 \mathrm{mg}, 0.81 \mathrm{mmol}$) and 6-hydroxyhexylamine ($283 \mathrm{mg}, 2.42 \mathrm{mmol}$) in chloroform (50 ml) was heated to reflux for 6 h . The resulting mixture was cooled to room temperature, diluted with chloroform (50 ml), washed with saturated sodium bicarbonate $(3 \times 30 \mathrm{ml})$, brine $(30 \mathrm{ml})$, dried with sodium sulfate and evaporated to dryness. The resulting orange solid was washed with ethyl ether (50 ml) to provide the pure product as a red solid (238 mg , $85 \%)$: mp $140-142^{\circ} \mathrm{C}$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1692,1641,1612,1506 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, \mathrm{J}=8.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49-7.37$ (m, 4 H), $4.53(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ (m, 2 H), $1.61(\mathrm{~m}, 6 \mathrm{H})$; positive ESIMS m / z (rel intensity) $348488\left(\mathrm{MH}^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{3}$: C, 76.06; H, 6.09; N, 4.03. Found: C, 76.06; H, 6.01; N, 4.04.

6-Methyl-5H-indeno[1,2-c]isoquinoline-5,11(6H)-dione (17) and 3-bromo-6-methyl-5H-indeno[1,2-c]isoquinoline-5,11(6H)-dione (28). 3-Amino-6-methyl-5H-indeno[1,2-c]isoquinoline-5,11(6H)-dione (5) ($870 \mathrm{mg}, 3.14 \mathrm{mmol}$) was dissolved in water (6 ml) and 1,4-dioxane (3 ml). Hydrobromic acid (48% in water, 1.8 ml) was added and the reaction mixture was heated at reflux for 20 min . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of sodium nitrite (280 mg) in water (10 ml) and 1,4-dioxane (20 ml) was added slowly. The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. This solution was added dropwise
to a solution of copper(I) bromide in water (10 ml) and 1,4-dioxane (10 ml) that was maintained at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then heated at reflux for 6 h . The solution was cooled down to room temperature and extracted with chloroform ($3 \times 200 \mathrm{ml}$). The organic extracts were combined and concentrated in vacuo. The products were separated by preparative TLC using chloroform as the eluent. Compound 28 was obtained as an orange solid ($120 \mathrm{mg}, 0.35 \mathrm{mmol}, 11 \%$): mp $269-271^{\circ} \mathrm{C}$. IR (KBr, cm ${ }^{-1}$) 3066, 2917, 1693, 1669, 1657, 1571, 1498, 1312; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54$ (d, J = 8.6 Hz, 1 H), 8.47 (d, J = $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (dd, J = 8.6, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) δ 190.0, 162.2, 156.1, 137.4, 136.9, 134.9, 133.1, 131.2, 131.0, 130.7, 128.5, 125.1, 124.6, 123.4, 122.9, 120.8, 107.8, 33.1; EIMS m/z $339\left(\mathrm{M}^{+}\right)$, CIMS m/z $340\left(\mathrm{MH}^{+}\right)$; HPLC purity: 95.10% (C-18 reverse phase, $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 90: 10$); 95.72% (C-18 reverse phase, $\mathrm{MeOH}, 100$). Compound 17 was obtained as a light red solid ($280 \mathrm{mg}, 1.07 \mathrm{mmol}, 34.1 \%$): $\mathrm{mp} 223-225^{\circ} \mathrm{C}$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2922,1693,1668,1613,1506,1432 ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~m}, 3 \mathrm{H})$, 4.09 (s, 3 H); EIMS m/z 261 (M+), CIMS m/z $262\left(\mathrm{MH}^{+}\right)$; HPLC purity: 96.75\% (C-18 reverse phase, $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 90: 10$); 95.36% ($\mathrm{C}-18$ reverse phase, $\mathrm{MeOH}, 100$).

3-lodo-6-methyl-5H-indeno[1,2-c]isoquinoline-5,11(6H)-dione (18). 3-Amino-6-methyl-5H-indeno[1,2-c]isoquinoline-5,11(6H)-dione (5) ($3.15 \mathrm{~g}, 11.3 \mathrm{mmol}$,) was dissolved in water (39 ml) and 1,4-dioxane (19 ml). Hydrochloric acid (36% in water, 5.5 ml) was added dropwise and the reaction mixture was heated to reflux for 10 min . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of sodium nitrite (1.15 g) in water (10 ml) was added slowly. The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. This solution was transferred to a funnel and added dropwise to a solution of potassium iodide (3.20 g) in water (15 ml) and 1,4-dioxane (5 ml) that was maintained at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then heated to reflux for 1 h . The reaction mixture was stirred overnight at room temperature and extracted with chloroform ($3 \times 200 \mathrm{ml}$). The organic extracts were combined and concentrated in vacuo. The solid was purified by flash column chromatography (silica gel), eluting with dichloromethane to provide a red solid (405 mg , $1.05 \mathrm{mmol}, 9.30 \%$): mp $262-264^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3065, 1690, 1664, 1602, 1571, 1536, 1497, 1426, 1310; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.39(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, 1 H), 7.98 (dd, J = 8.4, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65(m, 2 H), 7.43 (m, 2 H), 4.05 (s, 3 H); EIMS m/z 387 $\left(\mathrm{M}^{+}\right)$, CIMS m/z $388\left(\mathrm{MH}^{+}\right)$; HPLC purity: 97.57% (C-18 reverse phase, $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 90: 10$); 97.66 (C-18 reverse phase, MeOH, 100).

3-Amino-6-(3-chloropropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-

c]isoquinoline (19). 6-(3-Chloropropyl)-5,6-dihydro-3-nitro-5,11-dioxo-11H-indeno[1,2-
c]isoquinoline (1) ($0.200 \mathrm{~g}, 0.542 \mathrm{mmol}$) and $5 \% \mathrm{Pd} / \mathrm{C}(0.150 \mathrm{~g})$ were diluted with THF (50 ml). The solution was degassed and allowed to stir at room temperature under a hydrogen atmosphere for 3 h . The solution was filtered, the filterpad was washed with chloroformmethanol $1: 1(100 \mathrm{ml})$, and the filtrate was concentrated to provide a crude purple solid. The obtained solid was purified by flash column chromatography (silica gel), eluting with a gradient of chloroform-1\%-triethylamine to methanol-4\%-chloroform-1\% triethylamine to provide a brown solid ($0.065 \mathrm{~g}, 35 \%$): mp $192-196^{\circ} \mathrm{C}(\mathrm{dec}) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3358,1703$, 1641, 1577, 1517; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $) \delta 8.40(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=7.6$ Hz, 1 H), $7.63(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.32(\mathrm{~m}, 4 \mathrm{H}), 4.59(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.27 ($\mathrm{m}, 2 \mathrm{H}$); EIMS m/z (rel intensity) 338/340 (M^{+}, 100/36). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{CIN}_{2} \mathrm{O}_{2} .0 .3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.30 ; \mathrm{H}, 4.57$; $\mathrm{N}, 8.14$. Found: C, 66.20; H, 4.59; N, 7.86.

6-(4-Hydroxybutyl)-5H-indeno[1,2-c]isoquinoline-5,11(6H)-dione (22). A mixture of $20(100 \mathrm{mg}, 0.40 \mathrm{mmol})$ and 4-hydroxybutylamine ($0.11 \mathrm{ml}, 1.2 \mathrm{mmol}$) in chloroform (20 ml) was heated at reflux for 2 h . The resulting mixture was cooled to room temperature, diluted with chloroform (100 ml), washed with saturated sodium bicarbonate ($3 \times 30 \mathrm{ml}$), dried with sodium sulfate and concentrated to provide a product that was introduced into the next step without additional purification.

6-(5-Hydroxypentyl)-5H-indeno[1,2-c]isoquinoline-5,11(6H)-dione (23). A mixture of 20 ($100 \mathrm{mg}, 0.40 \mathrm{mmol}$) and 5 -hydroxypenylamine ($125 \mathrm{mg}, 1.21 \mathrm{mmol}$) in chloroform (30 ml) was heated at reflux for 2 h . The resulting mixture was cooled to room temperature, diluted with chloroform (100 ml), washed with saturated sodium bicarbonate (3 $\times 30 \mathrm{ml}$), dried with sodium sulfate and concentrated to provide the product as a red solid ($125 \mathrm{mg}, 93 \%$) that was introduced into the next step without additional purification.
cis-4-Carboxy-3,4-dihydro- N -(methyl)-3-(phenyl)-1(2H)isoquinolone (26). 5Nitrohomophthalic anhydride ($3.466 \mathrm{~g}, 16.73 \mathrm{mmol}$) was added to a chloroform (100 ml) solution of benzylidenemethylamine (25) ($1.994 \mathrm{~g}, 16.73 \mathrm{mmol}$) and the mixture was stirred at room temperature for 2 h . The precipitate was filtered, washed with chloroform (100 ml), and dried to provide a yellow solid ($4.192 \mathrm{~g}, 77 \%$): mp $140-142^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.90(\mathrm{~d}, \mathrm{~J}=2.51 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{dd}, \mathrm{J}=8.61,2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, \mathrm{J}=8.63 \mathrm{~Hz}$ and $0.99 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=6.49 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, \mathrm{~J}=6.53$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.08 (s, 3 H).

5,6-Dihydro-6-methyl-3-nitro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline
Thionyl chloride (5 ml) was added to a solution $26(1.000 \mathrm{~g}, 3.064 \mathrm{mmol})$ in benzene (50 ml). The solution was heated at reflux for 30 min , cooled to room temperature, and concentrated. The residue was diluted with nitrobenzene (30 ml), cooled in an ice bath, and aluminum chloride ($0.817 \mathrm{~g}, 6.129 \mathrm{mmol}$) was added. The solution was removed from the bath and
heated at $100^{\circ} \mathrm{C}$ for 1 h . Ice water (100 ml) was added and the solution was extracted with $\mathrm{CHCl}_{3}(3 \times 500 \mathrm{ml})$. The combined organic layer was washed with sat $\mathrm{NaHCO}_{3}(3 \times 250$ ml), sat $\mathrm{NaCl}(250 \mathrm{ml})$, and dried over sodium sulfate. The solution was concentrated, hexanes (500 ml) were added and liquid was decanted. The solid was washed with hexanes (100 ml) and the liquid was again decanted. The solid was purified by precipitation from chloroform-hexanes to provide a red-orange solid ($0.450 \mathrm{~g}, 48 \%$): mp $344-345^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.23(\mathrm{~d}, \mathrm{~J}=2.47 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{~d}, \mathrm{~J}=8.82 \mathrm{~Hz}, 1$ H), 8.51 (dd, J = 8.29 Hz and $2.45 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (m, 2 H), $7.55(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H})$.

Supplementary Method S2. Preparation of nuclear extracts and the electrophoretic mobility shift assay (EMSA). 5'IRDye $® 700$-labelled RXRE oligonucleotides (5'-AGGTTCAGGTCAGAGGTCAGAGAGCT-3') (1) were synthesized by Integrated DNA Technologies Inc. (Coralville, IA). Nuclear extracts were prepared as previously reported (2). Briefly, cells were washed with PBS and incubated in lysis buffer (10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0$, $60 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM}$ EDTA, 1 mM dithiothreitol, 100 mM PMSF, and 0.2% NP-40) for 5 min on ice. Following centrifugation at 2500 rpm at $4^{\circ} \mathrm{C}$ for 4 min , the pellet was washed with lysis buffer without NP-40. The nuclear proteins were extracted from the pellet after 10 min incubation with nuclear extract buffer (20 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0,420 \mathrm{mM} \mathrm{NaCl}, 1.5 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 0.2 \mathrm{mM}$ EDTA and 25% glycerol) and centrifugation at 14000 rpm at $4^{\circ} \mathrm{C}$ for 15 min . Binding reactions were performed by incubation of $5 \mu \mathrm{~g}$ of nuclear protein extracts, 2.5 mM dithiothreitol, $1 \mu \mathrm{~g}$ of poly (dI.dC), 2.5% glycerol, $50 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM}$ EDTA, and 50 nM DR-1 with IRDye ${ }^{\text {TM }} 700$ infrared dye-5'-end-labelled for 30 min at room temperature. Protein-DNA complexes were resolved by electrophoresis on 5% polyacrylamide gels in $0.5 x$ TBE buffer at 100 V for 1 h 30 min . The gel was visualized by Odyssey® Infrared Imaging System (LICOR Biosciences, Lincoln, NE).

References

1. Tanaka T, Rodríguez de la Concepción ML, De Luca LM. Involvement of all-trans-retinoic acid in the breakdown of retinoic acid receptors alpha and gamma through proteasomes in MCF-7 human breast cancer cells. Biochem Pharmacol. 2001;61(11):1347-55.
2. Park HJ, Chung HJ, Min HY, Park EJ, Hong JY, Kim WB, Kim SH, Lee SK. Inhibitory effect of DA-125, a new anthracyclin analog antitumor agent, on the invasion of human fibrosarcoma cells by down-regulating the matrix metalloproteinases. Biochem Pharmacol. 2005;71(1-2):21-31.

Supplementary Table S1. Cell cycle-related genes altered by bexarotene or AM6-36 in MCF7 cells (blue background: siginificantly down-regulated genes; red background: significanlty up-regulated genes).

				AM6-36		Bexarotene	
GeneBank	Symbol	Description	Gene Name	Fold change	P-value	Fold change	P-value
NM_005157	ABL1	C-abl oncogene 1, receptor tyrosine kinase	ABL/JTK7	0.88	0.58	1.32	0.63
NM_013366	ANAPC2	Anaphase promoting complex subunit 2	APC2	1.56	0.30	0.98	0.77
NM_013367	ANAPC4	Anaphase promoting complex subunit 4	APC4	1.08	0.98	0.90	0.60
NM_004675	DIRAS3	DIRAS family, GTP-binding RAS-like 3	ARHI/NOEY2	0.80	0.53	1.83	0.17
NM_000051	ATM	Ataxia telangiectasia mutated	AT1/ATA	0.55	0.14	1.26	0.67
NM_001184	ATR	Ataxia telangiectasia and Rad3 related	FRP1/MEC1	0.65	0.21	0.98	0.80
NM_004324	$B A X$	BCL2-associated X protein	BCL2L4	1.69	0.19	1.14	0.90
NM_016567	BCCIP	BRCA2 and CDKN1A interacting protein	TOK-1/TOK1	1.11	0.92	0.78	0.38
NM_000633	BCL2	B-cell CLL/lymphoma 2	Bcl-2	0.22	0.06	0.13	0.04
NM_001168	BIRC5	Baculoviral IAP repeat-containing 5	API4/EPR-1	0.07	0.02	0.26	0.04
NM_007294	BRCA1	Breast cancer 1, early onset	BRCAI/BRCC1	0.18	0.06	0.35	0.11
NM_000059	BRCA2	Breast cancer 2, early onset	BRCC2/BROVCA2	0.09	0.02	0.36	0.06
NM_031966	CCNB1	Cyclin B1	CCNB	0.37	0.07	0.60	0.19
NM_004701	CCNB2	Cyclin B2	HsT17299	0.18	0.04	0.50	0.14
NM_005190	CCNC	Cyclin C	CycC	0.98	0.75	1.18	0.87
NM_053056	CCND1	Cyclin D1	BCL1/D11S287E	1.30	0.67	0.33	0.08
NM_001759	CCND2	Cyclin D2	KIAK0002	0.96	0.72	0.24	0.10
NM_001238	CCNE1	Cyclin E1	CCNE	0.58	0.20	0.63	0.25
NM_001761	CCNF	Cyclin F	FBX1/FBXO1	0.19	0.04	0.40	0.11
NM_004060	CCNG1	Cyclin G1	CCNG	1.70	0.16	1.12	0.94
NM_004354	CCNG2	Cyclin G2	Cyclin G2	2.81	0.01	1.88	0.12
NM_001239	CCNH	Cyclin H	CAK/p34	0.96	0.69	1.21	0.80
NM_001240	CCNT1	Cyclin T1	CCNT/CYCT1	0.99	0.69	1.14	0.97
NM_001241	CCNT2	Cyclin T2	FLJ90560	0.94	0.62	1.24	0.75
NM_003903	CDC16	Cell division cycle 16 homolog (S. cerevisiae)	APC6	1.03	0.81	1.27	0.68
NM_001786	CDC2	Cell division cycle 2, G1 to S and G2 to M	CDC28A/CDK1	0.09	0.04	0.32	0.08
NM_001255	CDC20	Cell division cycle 20 homolog (S. cerevisiae)	CDC20A/p55CDC	0.11	0.04	0.54	0.20
NM_004359	CDC34	Cell division cycle 34 homolog (S. cerevisiae)	E2-CDC34/UBC3	2.22	0.03	1.56	0.30
NM_001798	CDK2	Cyclin-dependent kinase 2	p33(CDK2)	0.28	0.05	0.28	0.05
NM_000075	CDK4	Cyclin-dependent kinase 4	CMM3/PSK-J3	0.53	0.14	1.19	0.79
NM_003885	CDK5R1	Cyclin-dependent kinase 5, regulatory subunit 1 (p35)	CDK5P35/CDK5R	0.63	0.24	0.70	0.31
NM_016408	CDK5RAP1	CDK5 regulatory subunit associated protein 1	C20orf34/C42	1.95	0.04	0.99	0.82
NM_001259	CDK6	Cyclin-dependent kinase 6	PLSTIRE	0.51	0.13	0.47	0.12
NM_001799	CDK7	Cyclin-dependent kinase 7	CAK1/CDKN7	1.61	0.24	1.98	0.09
NM_001260	CDK8	Cyclin-dependent kinase 8	K35	0.80	0.42	1.40	0.59
NM_000389	CDKN1A	Cyclin-dependent kinase inhibitor 1 A (p21, Cip1)	CAP20/CDKN1	34.55	0.00	5.46	0.00
NM_004064	CDKN1B	Cyclin-dependent kinase inhibitor 1B (p27, Kip1)	CDKN4/KIP1	0.92	0.60	0.83	0.50
NM_000077	CDKN2A	Cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)	ARF/CDK4I	1.68	0.48	1.07	0.85
NM_004936	CDKN2B	Cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)	CDK4I/INK4B	1.90	0.10	2.58	0.03
NM_005192	CDKN3	Cyclin-dependent kinase inhibitor 3	CDI1/CIP2	0.16	0.04	0.52	0.16
NM_001274	CHEK1	CHK1 checkpoint homolog (S. pombe)	CHK1	0.04	0.03	0.36	0.08
NM_007194	CHEK2	CHK2 checkpoint homolog (S. pombe)	CDS1/CHK2	0.32	0.07	0.31	0.07

NM_001826	CKS1B	CDC28 protein kinase regulatory subunit 1B	CKS1/PNAS-16	0.60	0.19	0.93	0.65
NM_001827	CKS2	CDC28 protein kinase regulatory subunit 2	CKSHS2	1.34	0.44	0.85	0.45
NM_003592	CUL1	Cullin 1	MGC149834	1.44	0.46	1.25	0.75
NM_003591	CUL2	Cullin 2	MGC131970	1.65	0.22	0.82	0.48
NM_003590	CUL3	Cullin 3	Cullin-Cul3	1.18	0.84	0.99	0.80
NM_004399	DDX11	```DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 (CHL1-like helicase homolog, S. cerevisiae)```	CHL1/CHLR1	0.17	0.05	0.44	0.13
NM_004945	DNM2	Dynamin 2	CMTDI1/CMTDIB	0.81	0.44	1.08	0.88
NM_001950	E2F4	E2F transcription factor 4, p107/p130-binding	E2F-4	1.11	0.95	1.04	0.83
NM_001924	GADD45A	Growth arrest and DNA-damage-inducible, alpha	DDIT1/GADD45	12.09	0.00	13.68	0.00
NM_005316	GTF2H1	General transcription factor IIH, polypeptide 1, 62kDa	BTF2/TFB1	1.41	0.46	1.57	0.28
NM_016426	GTSE1	G-2 and S-phase expressed 1	B99	0.09	0.01	0.30	0.04
NM_016323	HERC5	Hect domain and RLD 5	CEB1/CEBP1	2.36	0.06	1.37	0.53
NM_004507	HUS1	HUS1 checkpoint homolog (S. pombe)	Hus1	0.46	0.14	1.18	0.85
NM_014708	KNTC1	Kinetochore associated 1	ROD	0.29	0.06	0.31	0.07
NM_002266	KPNA2	Karyopherin alpha 2 (RAG cohort 1, importin alpha 1)	IPOA1/QIP2	0.43	0.10	0.56	0.17
NM_002358	MAD2L1	MAD2 mitotic arrest deficient-like 1 (yeast)	HSMAD2/MAD2	0.11	0.03	0.35	0.08
NM_006341	MAD2L2	MAD2 mitotic arrest deficient-like 2 (yeast)	MAD2B/REV7	1.21	0.75	0.85	0.52
NM_004526	MCM2	Minichromosome maintenance complex component 2	BM28/CCNL1	0.15	0.04	0.20	0.05
NM_002388	MCM3	Minichromosome maintenance complex component 3	HCC5/P1-MCM3	0.17	0.04	0.27	0.06
NM_005914	MCM4	Minichromosome maintenance complex component 4	CDC21/CDC54	0.28	0.07	0.24	0.06
NM_006739	MCM5	Minichromosome maintenance complex component 5	CDC46/P1-CDC46	0.20	0.04	0.31	0.07
NM_002417	MKI67	Antigen identified by monoclonal antibody Ki67	KIA	0.03	0.04	0.23	0.07
NM_002431	MNAT1	Menage a trois homolog 1, cyclin H assembly factor (Xenopus laevis)	MAT1/RNF66	1.05	0.85	1.05	0.91
NM_005590	MRE11A	MRE11 meiotic recombination 11 homolog A (S. cerevisiae)	ATLD/HNGS1	0.18	0.10	0.33	0.08
NM_002485	NBN	Nibrin	AT-V1/AT-V2	0.62	0.21	0.80	0.40
NM_182649	PCNA	Proliferating cell nuclear antigen	MGC8367	0.20	0.05	0.20	0.05
NM_002853	RAD1	RAD1 homolog (S. pombe)	HRAD1/REC1	2.40	0.04	0.55	0.17
NM_002873	RAD17	RAD17 homolog (S. pombe)	CCYC/HRAD17	1.64	0.26	1.55	0.33
NM_002875	RAD51	RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae)	BRCC5/HRAD51	0.33	0.08	0.31	0.06
NM_004584	RAD9A	RAD9 homolog A (S. pombe)	RAD9	0.72	0.32	1.02	0.85
NM_000321	RB1	Retinoblastoma 1	OSRC/RB	0.91	0.58	0.71	0.35
NM_002894	RBBP8	Retinoblastoma binding protein 8	CTIP/RIM	0.38	0.08	0.96	0.72
NM_002895	RBL1	Retinoblastoma-like 1 (p107)	CP107/PRB1	0.12	0.04	0.27	0.08
NM_005611	RBL2	Retinoblastoma-like 2 (p130)	P130/Rb2	1.44	0.41	0.69	0.29
NM_002947	RPA3	Replication protein A3, 14kDa	REPA3	0.64	0.21	0.51	0.13
NM_013376	SERTAD1	SERTA domain containing 1	SEI1/TRIP-Br1	3.27	0.01	1.47	0.37
NM_005983	SKP2	S-phase kinase-associated protein 2 (p45)	FBL1/FBXL1	0.06	0.03	0.24	0.06
NM_003352	SUMO1	SMT3 suppressor of mif two 3 homolog 1 (S. cerevisiae)	DAP-1/GMP1	1.35	0.48	0.83	0.47
NM_007111	TFDP1	Transcription factor Dp-1	DP1/DRTF1	0.44	0.12	0.44	0.12
NM_006286	TFDP2	Transcription factor Dp-2 (E2F dimerization partner 2)	DP2/Dp-2	0.94	0.70	1.14	0.91
NM_000546	TP53	Tumor protein p53	LFS1/TRP53	0.83	0.45	1.37	0.60
NM_003334	UBA1	Ubiquitin-like modifier activating enzyme 1	A1S9/A1S9T	1.57	0.30	0.95	0.69

Supplementary Figure legends

Supplementary Figure S1. Web of genes affected by bexarotene or AM6-36 in this array are shown using database supported by SAbiosciences (derived with some modification from http://www.sabiosciences.com/genenetwork/). Data are shown for $p \leq 0.05$. Blue circles: genes altered by AM6-36; green circles: genes altered by bexarotene; red circles: genes altered by both AM6-36 and bexarotene; empty circles: genes of interest). With the exception of CDKN2B, and CDKN3 every gene shown in the chart is altered by both AM6-36 and bexarotene at $\mathrm{p} \leq 0.083$.

Supplementary Figure S2. Effect of AM6-36 on DNA binding activity of RXR in MCF7 cells. MCF7 cells (10×10^{4} cells $/ \mathrm{ml}$) were incubated in 6 cm dishes for 24 h , and then treated samples as indicated for an additional 24 h . Cells were lysed, nuclear extracts were prepared, and used in the EMSA ($5 \mu \mathrm{~g}$ each). DNA-protein complexes were separated on 5% polyacrylamide gel.

Park, Supplementary Figure S1.

Park, Supplementary Figure S2.

