
Supplementary Table S1. Primers for different transcripts. 

 

Transcript target Forward primer (5’ to 3’) Reverse primer (5’ to 3’) 

TFAM CACCCAGATGCAAAACTTTCAG CTGCTCTTTATACTTGCTCACAG 

Uqcrc1 ATCAAGGCACTGTCCAAGG TCATTTTCCTGCATCTCCCG 

NDUSF8 GTTCATAGGGTCAGAGGTCAAG TCCATTAAGATGTCCTGTGCG 

ATP5a1 CATTGGTGATGGTATTGCGC TCCCAAACACGACAACTCC 

Cpt1b CCTCCGAAAAGCACCAAAAC GCTCCAGGGTTCAGAAAGTAC 

LCAD GGTGGAAAACGGAATGAAAGG GGCAATCGGACATCTTCAAAG 

MCAD TGTTAATCGGTGAAGGAGCAG CTATCCAGGGCATACTTCGTG 

Cpt1a CCATCCTGTCCTGACAAGGTTTAG CCTCACTTCTGTTACAGCTAGCAC 

Birc3 ACGCAGCAATCGTGCATTTTG CCTATAACGAGGTCACTGACG 

CREB1 GGAATCTGGAGCAGACAACC ATAACGCCATGGACCTGGAC 

Bcl2 GGACTTGAAGTGCCATTG GT AGCCCCTCTGTGACAGCTTA 

API5 TCCAGGGTAAAACGGGTGAG CAACGACTTTAATCTTGTTCTCTTCTGT 

   

 

PGC-1a : QuantiTect Primer Assay, Mm_Ppargc1a_1_SG (QT00156303), Qiagen 
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Supplementary Fig. S1. Synergistic effect of bezafibrate with PD-1 blockade in vivo: (A) Schematic diagram of the

combination therapy schedule (upper). Following this schedule, MethA-bearing BALB/c mice were treated with anti-PD-L1 mAb

along with bezafibrate. Tumor sizes and/or survival rates are shown (lower). (B) MethA-bearing BALB/c mice were treated with

bezafibrate alone on the same schedule as in A. Tumor sizes are shown. (A–B) Data represent the means ± SEM of five mice. *p <

0.05, one-way ANOVA analysis (anti–PD-L1 mAb vs. anti–PD-L1 mAb + bezafibrate).
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Supplementary Fig. S2. Bezafibrate combination enhances the effector function of CD8+ T cells in vivo:MC38-bearing mice were treated with

anti-PD-L1 mAb and bezafibrate on the same schedule as shown in Supplemental figure S1A. Mice were sacrificed and CD8+ T cells in DLN and

tumor sites were analyzed on the indicated day. (A) DLN cells on day 15 were stained with anti-CD8, CD62L, CD44, T-bet and Eomes mAb.

Representative FACS profiles of P1–P3 stained with the T-bet and Eomes in the mice treated with anti-PD-L1 mAb and bezafibrate are shown

(left). Frequency of P1–P3 stained with T-bet and Eomes were compared between treated groups (lright). Colors correspond to those of the P1–

P3 populations. (B) Cells isolated from the tumor mass on day 11 were stained with anti-CD8, and CD45.1, T-bet and Eomes mAb.

Representative FACS profiles of CD8+ TILs stained with the T-bet and Eomes in the treated groups are shown. (C) DLN cells in day 15 were
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five mice.
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Supplementary Fig. S3. Bezafibrate combination boosts energy metabolism in CTLs in vivo: (A) For simplicity, a representative OCR plot is
drawn, where basal respiration, ATP turnover, maximum respiration, spare respiratory capacity, proton leak, and non-mitochondrial respiration
are shown (Seahorse Bioscience). (B) MC38-bearing mice were treated with anti-PD-L1 mAb and bezafibrate on the same schedule as shown in
Supplementary figure 1A. On day 9, the mice were sacrificed and CD8+ T cells in DLN were analyzed. OCR was measured using DLN CD8+ T cells
isolated from treated mice. Cells were mixed from five mice. Basal respiration, maximal respiration, and ATP turnover were calculated. (C)
According to the therapy schedule shown in Supplementary figure S1A, MC38-bearing mice were sacrificed on day 13. OCR was measured using
DLN CD8+ T cells isolated from treated mice. Cells were mixed from five mice. Basal respiration, maximal respiration, ATP turnover, and SRC
were calculated. (D) In the same experiment as shown in (C), ECAR of DLN CD8+ T cells were measured (left). Basal OCR and ECAR values are
plotted (middle). OCR/ECAR ratio was measured (right). (B–D) Data represent the means ± SEM of 6 wells. *p < 0.05, **p < 0.01, ***p < 0.001,
one-way ANOVA analysis. Data are representative of two independent experiments.
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Supplementary Fig. S4. Bezafibrate upregulates Cpt1a expression CD8+ T cells in vivo : MC38-bearing mice were treated with anti-PD-L1 mAb

and bezafibrate on the same schedule as shown in Supplemental figure S1A. Mice were sacrificed and CD8+ T cells in DLN and tumor sites were

analyzed on the indicated day. (A) DLN cells on day 15 were stained with anti-CD8, CD62L, CD44 and Cpt1a mAbs. Representative FACS patterns

of P3 stained with Cpt1a are shown (left). The frequency of Cpt1a+ CD8+ T cells were calculated in P3 population from treated mice (right). (B)
Cells isolated from the tumor mass on day 15 were stained with anti-CD8, CD45.2 and Cpt1a mAb. Representative FACS data of CD8+ TIL (left)

and the frequency (right) of Cpt1a+ T cells among CD8+ T cells are shown. (A, B) Data represent the means ± SEM of five mice. *p < 0.05, **p <

0.01, one-way ANOVA analysis.

ct
rl 

Ig
G

an
ti-

PD-L
1

an
ti-

PD-L
1+

 b
ez

af
ib

ra
te

0

10

20

30

40

cpt1a freq in CD8 TIL new for paper

%
 C

pt
1a

+ 

C
D

8+
TI

Ls

B

ctr
l Ig

G

an
ti-P

D-L1

an
ti-P

D-L1+
 bez

afi
brat

e
0

10

20

30

40

50

cpt1a freq in P3 in DLN new

CD8

C
pt

1a

%
 C

pt
1a

+

C
D

8+
T 

ce
lls

Ctrl IgG anti-PD-L1
anti-PD-L1

+ Bezafibrate

CD8

C
pt

1a

Ctrl IgG anti-PD-L1
anti-PD-L1

+ Bezafibrate

anti-PD-L1
Bezafibrate

+
+
+-

- -

anti-PD-L1
Bezafibrate

+
+
+-

- -

**

*

A



ct
rl

an
ti-

PD-L
1

an
ti-

PD-L
1 +

 B
ez

af
ib

ra
te

 

Bez
af

ib
ra

te
 

0

2000

4000

6000

8000

DLN MFI of Mitomass in highly prolfrtin cell 

2

4

6

0

8

ct
rl

an
ti-

PD-L
1

an
ti-

PD-L
1 +

 B
ez

af
ib

ra
te

 

Bez
af

ib
ra

te
 

0

500

1000

1500

DLN MFI of cellular ros in highly prolfrtin cell 

5

10

15

0
ct

rl

an
ti-

PD-L
1

an
ti-

PD-L
1 +

 B
ez

af
ib

ra
te

 

Bez
af

ib
ra

te
 

0

500

1000

1500

DLN MFI of Mito sup in highly prolfrtin cell 

5

10

15

0
ct

rl

an
ti-

PD-L
1

an
ti-

PD-L
1 +

 B
ez

af
ib

ra
te

 

Bez
af

ib
ra

te
 

0

5000

10000

15000

DLN MFI of Mitopot in highly prolfrtin cell 

5

10

15

0

Supplementary Fig. S5. 

Mito Mass Mito potential Mito superoxide Cellular ROS

M
FI

 (1
02 )

anti-PD-L1
Bezafibrate

+
+
+-

- -
+

+
+-

- -
+

+
+-

- -
+

+
+-

- -

18.5 18.5

59.3 3.70

11.0 23.1

53.3 12.6 45.0 7.50

17.5 30.0

M
ito

 m
as

s

Mito Membrane potential

Ctrl IgG anti-PD-L1
anti-PD-L1

+ Bezafibrate

M
ito

 S
up

er
ox

id
e

Cellular  ROS

Ctrl IgG anti-PD-L1
anti-PD-L1

+ Bezafibrate

2.0 8.0

72.0 18.0

6.61 9.92

63.6 19.8 49.4 24.7

10.4 15.6

* * **

A

M
FI

 (1
03 )

M
FI

 (1
03 )

M
FI

 (1
02 )
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Supplementary Fig. S6. Genes regulated by bezafibrate in killer T cells in vitro: (A–D) Following the schedule shown in Figure 5A, total RNA of

cultured CD8+ T cells on day 13 was extracted and subjected to microarray assay to compare gene expression levels. (A) Distribution of all up-

and down-regulated genes. (B) Distribution of genes showing a more than 1.5-fold change according to their coding and non-coding nature. (C)
Bar chart showing the number of genes differentially expressed by bezafibrate treatment, with increased expression in red and decreased

expression in blue based on KEGG pathway analysis. The pathways were sorted by the number of genes with three or more and p value < 0.05.
(D) Genes with 1.5-fold change among the indicated pathways defined by KEGG.
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Supplementary Fig. S7. Bezafibrate activates mitochondria of naïve CD8+ T cells in the priming phase in vitro : (A) Naïve
CD8+ T cells were isolated from the spleen of C57BL/6 mice, labeled with CellTrace dye, stimulated with anti-CD3 and CD28
mAb-coated beads with bezafibrate for 2 days as treated in Fig. 6A. T cell proliferation was measured by dye dilution method.
Histogram of CellTrace intensity (left) and % of each division (right) were compared between treated groups. (B) Naïve CD8+ T
cells were isolated from the spleen of C57BL/6 mice, stimulated with anti-CD3 and CD28 mAb-coated beads with bezafibrate
for 2 days as treated in Fig. 6A. Representative FACS profiles of staining of mitochondrial dyes are shown (upper). MFI of each
dye was compared between treated groups (lower). MFI of each dye was compared between treated groups (lower). (B) Data
represent the means ± SEM of 3 wells. **p < 0.01, two-tailed student t-test.
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Supplementary Fig. S8. Scheme for bezafibrate-induced antitumor immunity in PD-1 blockade: (A) PD-1 signaling prevents the terminal
differentiation of effector T cells but promotes dysfunction. (B) PD-1 blockade rescues effector function while enhancing terminal
differentiation and decreasing the number of effector T cells. (C) Bezafibrate activates PPARs, which induces FAO and Bcl2, leading to inhibition
of apoptosis and terminal differentiation in T cells. PPARs activation can also lead to mitochondrial activation, which promotes proliferation of
effector CTLs. These pathways help to increase the number of effector CTLs.




