CANCER DISCOVERY CONTENTS

JANUARY 2013 - VOLUME 3 - NUMBER 1

IN THIS ISSUE	Highlighted research articles1			
NEWS IN BRIEF	Important news stories affecting the community4			
NEWS IN DEPTH	Q&A: Mina Bissell on Tumors as Organs			
	Putting the Brakes on Cancer in Africa8			
RESEARCH WATCH	Selected highlights of recent articles of exceptional significance from the cancer literature9			
ONLINE	For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.			
VIEWS	In The Spotlight			
	Unpicking the Combination Lock for Mutant BRAF and RAS Melanomas			
	Prospective			
	The Genomic Landscape of Breast Cancer as a Therapeutic Roadmap			

	М	INI	
RE\	/	EW	

ARID1A Mutations in Cancer: Another Epigenetic Tumor **Suppressor?**......35 J.N. Wu and C.W.M. Roberts

RESEARCH Opposing Effects of BRIEF Androgen Deprivation and Targeted Therapy on Prostate Cancer Prevention.....44

> S. Jia, X. Gao, S.H. Lee, S.-M. Maira, X. Wu, E.C. Stack, S. Signoretti, M. Loda, J.J. Zhao, and T.M. Roberts

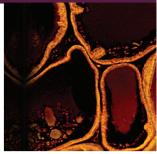
Précis: Antiandrogen therapies promote prostate cancer progression, whereas blockade of PI3K and MAPK signaling suppresses tumor growth in the context of PTEN deficiency.

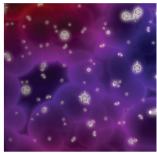
RESEARCH ARTICLES

Genotype-Selective Combination Therapies for Melanoma Identified by High-Throughput Drug

M.A. Held, C.G. Langdon, J.T. Platt, T. Graham-Steed, Z. Liu, A. Chakraborty, A. Bacchiocchi, A. Koo, J.W. Haskins, M.W. Bosenberg, and D.F. Stern

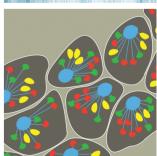
See commentary, p. 14


Précis: A systematic screening approach was used to characterize inhibitor combinations that are effective in melanomas driven by specific oncogenic mutations.


Loss of 53BP1 Causes **PARP Inhibitor Resistance** in Brca1-Mutated Mouse Mammary Tumors......68

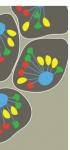
J.E. Jaspers, A. Kersbergen, U. Boon, W. Sol, L. van Deemter, S.A. Zander, R. Drost, E. Wientjens, J. Ji, A. Aly, J.H. Doroshow, A. Cranston, N.M.B. Martin, A. Lau, M.J. O'Connor, S. Ganesan, P. Borst, J. Jonkers, and S. Rottenberg

See commentary, p. 20


Précis: PARP inhibitor resistance can arise in vivo through partial restoration of homologous recombination caused by 53BP1 inactivation.







The mTORC1 Inhibitor Everolimus
Prevents and Treats Eμ-Myc Lymphoma
by Restoring Oncogene-Induced
Senescence

M. Wall, G. Poortinga, K.L. Stanley, R.K. Lindemann, M. Bots, C.J. Chan, M.J. Bywater, K.M. Kinross, M.V. Astle, K. Waldeck, K.M. Hannan, J. Shortt, M.J. Smyth, S.W. Lowe, R.D. Hannan, R.B. Pearson, R.W. Johnstone, and G.A. McArthur

Précis: mTORC1-dependent bypass of MYC-induced senescence is required for the initiation and maintenance of $E\mu$ -Myc B-cell lymphoma.

Targeting C4-Demethylating Genes in the Cholesterol Pathway Sensitizes Cancer Cells to EGF Receptor Inhibitors via Increased EGF Receptor Degradation ... 96

A. Sukhanova, A. Gorin, I.G. Serebriiskii, L. Gabitova, H. Zheng, D. Restifo, B.L. Egleston, D. Cunningham, T. Bagnyukova, H. Liu, A. Nikonova, G.P. Adams, Y. Zhou, D.-H. Yang, R. Mehra, B. Burtness, K.Q. Cai, A. Klein-Szanto, L.E. Kratz, R.I. Kelley, L.M. Weiner, G.E. Herman, E.A. Golemis, and I. Astsaturov

Précis: Sterol biosynthesis genes regulate EGFR endocytosis and signaling, and inhibition of these genes increases the efficacy of anti-EGFR therapies.

A. Young, D. Lou, and F. McCormick

See commentary, p. 24

Précis: Wild-type RAS isoforms regulate growth factor signaling in the context of oncogenic RAS and are required for optimal growth of cells harboring *RAS* mutations.

Correction

IDO Is a Nodal Pathogenic Driver	
of Lung Cancer and Metastasis	
Development	124

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org. Online-only News stories include the following:

- New ADC Effective against Prostate Cancer
- Proposals Aim to Make Trials More Efficient
- Triple Jeopardy for Triple-Negative Breast Cancers
- Sandy Underlines Need for Disaster Preparation
- Inhibiting JAK2 for Inflammatory Breast Cancer
- Bevacizumab Fails to Up Breast Cancer Survival

ON THE COVER

Young and colleagues show that oncogenic and wild-type RAS isoforms have nonredundant, independent roles in cancer cells. Oncogenic RAS isoforms desensitize cells to receptor tyrosine kinase (RTK) stimulation and promote basal mitogen-activated protein kinase (MAPK) signaling, whereas wild-type RAS isoforms are required for RTK-dependent activation of MAPK signaling and optimal growth of cancer cells expressing oncogenic RAS. Depletion of oncogenic RAS sensitizes cells to wild-type isoform-mediated growth factor signaling, uncovering a potential resistance mechanism employed by RAS-mutant cells. Combined inhibition of RAS and RTK signaling effectively blocks growth of cells expressing oncogenic RAS and may therefore be a potential approach to circumvent resistance. For details, please see the article by Young and colleagues on page 112.