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SUPPLEMENTARY METHODS

Analysis of RAS pathway aberrations in cell-free (cf)DNA in the first cohort
Analysis of RAS pathway mutations and copy number alteration (CNA) was performed starting from cfDNA collected at time of disease progression in a multi-step analysis as described in the figure below.  RAS pathway hotspots and CNA were prioritized based on frequency of these abnormalities in causing epidermal growth factor receptor (EGFR) inhibitors resistance in colorectal cancer (CRC) in available literature1,2.  Hotspots were tested in batches of five, if no abnormality was observed in the initial step the analysis was extended to a subsequent batch.  Once one or more abnormalities were detected in progression disease cfDNA, the analysis for the same aberration was extended backward to all the previous blood in order to date the exact onset of the abnormality back during the course of treatment.    
[image: ]



Digital Pathology
The slides were systematically scanned creating a digital archive of all the histological samples using NanoZoomer (HAMAMATSU PHOTONICS UK Limited, Welwyn Garden City, UK).  The viable tumour was highlighted with imaging software (NanoZoomer Digital Pathology System), allowing total tumour area to be calculated.  

Targeted sequencing libraries
DNA from 82 samples (corresponding to 16 patients) was extracted from formalin-fixed paraffin-embedded (FFPE) sections using the QIAamp FFPE DNA extraction kit (Qiagen) and DNA from 16 buffy coats were extracted with the GenElute Mammalian DNA kit (Sigma). Polymerase Chain Reaction (PCR) primers were designed for each specific mutation (table below) and PCRs were carried out with 3ng of DNA in 25ul reactions using a high fidelity enzyme mix (Accuzyme, Bioline).  All the different amplicons from each sample were pooled together and purified using the QIAquick kit (Qiagen).  Dual indexed libraries were generated from these amplicon pools using the NEBnext Ultra DNA library prep kit for Illumina (New England Biolabs) following the manufacturer’s instructions with the exception of 1.5 X AMPure bead purification after adapter ligation.  All the libraries were ran on a Bioanalyser DNA chip, pooled together, purified using agarose gel electrophoresis and sequenced at GATC Biotech (Germany).  Success rate of sequencing was in keeping with other molecular profiling studies3-5.




	
List of Primers used for amplicon based ultra-deep sequencing


	Mutation
	Forward
	Reverse
	Amplicon size
	Tm  (oC)

	PIK3CA_E545
	5'- TGAC AAA GAA CAG CTC AAA G -3'
	5'- ATT TTA GCA CTT ACC TGT GAC -3'
	101bp
	61.5

	BRAF_V600
	5'- GGT GAT TTT GGT CTA GCT ACA G -3'
	5'- AGT AAC TCA GCA GCA TCT CAG G -3'
	147bp
	63

	NRAS_G12
	5'- CTA CCA CTG GGC CTC ACC TCT ATG -3'
	5'- GTT CTT GCT GGT GTG AAA TGA CTG AGT AC -3'
	145bp
	61.5

	KRAS_G12/13
	5'-AAG GCC TGC TGA AAA TGA CTG-3'
	5'-GGT CCT GCA CCA GTA ATA TGC A-3'
	165bp
	61.5

	KRAS_Q61
	5'- GAC TGT GTT TCT CCC TTC TCA G -3'
	5'- CAA AGA AAG CCC TCC CCA GT -3'
	150bp
	65

	KRAS_A146
	5'- GGA CTC TGA AGA TGT ACC TAT GG -3'
	5'- CCT GTC TTG TCT TTG CTG ATG -3'
	140bp
	61.5

	PIK3CA_H1047
	5'- CTG AGC AAG AGG CTT TGG  -3'
	5'- TTT TCA GTT CAA TGC ATG CTG -3'
	119bp
	61.5

	NRAS_Q61
	5'- CAC CCC CAG GAT TCT TAC AG -3'
	5'- TCG CCT GTC CTC ATG TAT TG -3'
	125bp
	61.5

	APC_hs14
	5'- TTC ATT ATC ATC TTT GTC ATC AG -3'
	5'- CTG ACC TAG TTC CAA TCT TT -3'
	122bp
	55.5

	APC_hs17
	5'- AAG CAG AGA CAC AAG CAA AGT C -3'
	5'- TGA TGA AGA GGA GCT GGG TAA -3'
	150bp
	61.5

	APC_hs04
	5'- TGA TGG TTA TGG TAA AAG AGG TCA -3'
	5'- TAG GTC GGC TGG GTA TTG A -3'
	103bp
	61.5

	APC-exon8
	5'- ACC TAT AGT CTA AAT TAT ACC ATC -3'  
	5'- GTC ATG GCA TTA GTG ACC AG -3' 
	184bp
	58

	APC_hs11
	5'- TGG AAT TAA GAA TAA TGC CTC CA -3'
	5'- TTT CTG CCT CTT TCT CTT GG -3' 
	105bp
	60

	APC_hs1
	5'- GTT CAG GAG ACC CCA CTC -3' 
	5'- CAT TCC ACT GCA TGG TTC AC -3' 
	111bp
	58

	APC_hs2
	5'- CCC TAG AAC CAA ATC CAG CA -3'
	5'- TGT CTG AGC ACC ACT TTT G -3'
	118bp
	60

	APC_hs3
	5'- GCT CAA ACC AAG CGA GAA G -3'
	5'- TGG AGT ACT TTC CGT GGC -3' 
	156bp
	56

	APC_hs20
	5'- CCA AAA GTG GTG CTC AGA CA -3'
	5'- GCA ATC GAA CGA CTC TCA AA -3'
	121bp
	65






Tumour DNA sequencing using the 41 cancer related genes “FOrMAT” panel
DNA was extracted from 5 x 10uM sections of FFPE Tumour and libraries were prepared using the Kapa Hyperplus protocol (Roche) using validated standard operating procedures in the clinically accredited Molecular Diagnostic Laboratory at the Royal Marsden Centre for Molecular Pathology.  Libraries were hybridised to a custom gene panel, GIv2 (Roche Nimblegen) consisting of 45 targets. Sequencing was performed on an Illumina Nextseq (mid output) to generate mean depths of > 300X. The GIv2 panel has been validated to detect single nucleotide variants at >5% allele frequency with >99% sensitivity (95% CI) and >97% specificity (95% CI).  Small indels can be detected with sensitivity >81% at >5% variant allele frequency.  The panel is capable of detecting gene amplifications (>8 copies) in samples with >30% neoplastic nuclei.
Circulating free DNA quantitation
cfDNA was quantified by means of quantitative Real-Time (qRT) PCR using TaqMan® RNase P Detection Reagents Kit (FAM™ Dye) (ThermoFisherScientific). Each reaction was performed in triplicate in a 20μL final volume. Reaction mixture consisted of 2μL of DNA elution, 1X TaqMan Universal Master Mix II No UNG (ThermoFisherScientific), 1X RNase P Primer-Probe (FAM™ dye) mix and 7μL sterile H2O. PCR was performed in 96-well plates using the absolute quantification protocol in StepOne Plus Real-Time PCR system (ThermoFisherScientific).  For DNA quantification a six point calibration curve was created for each plate using Human Genomic Control DNA included in the kit, with fitting serial 1:5 dilutions: 20000pg, 4000pg, 800pg, 160pg, 32pg, 6pg. Results were calculated and exported by means of StepOne software v2.3 (ThermoFisherScientific).
Mathematical Modelling
The response and relapse of CRC to anti-EGFR therapy was modelled by exponential decay and growth respectively.  We described the average response of a tumour in time by the combined effect of the treatment sensitive and the treatment resistant tumour cell populations.  The tumour burden  at time  was given by: 
          				    (1)
Where  and  describe the response and relapse rate of the sensitive and resistant fraction of tumour cells respectively.  The parameters and  describe the abundance of sensitive and resistant cells at time .   We then fit equation (1) to time resolved measures of the carcinoembrynoic antigen (CEA) level in the blood of CRC patients.  The fit provides the 4 parameters: , , , and .  The response and relapse rates can be transformed into doubling or half-life times via  and .  The response and relapse rates are summarised in Figure 5.  If a pre-existing small treatment resistant sub-clone was present, we found a typical U-shape behaviour of the CEA level over time.  At treatment initiation the majority of cells were treatment sensitive (.  Initially the dynamics of tumour burden over time [equation (1)] was dominated by the decaying exponential function and only later the resistant cell population took over the tumour.  The relative change of tumour composition was given by: 
                                                           (2)

                                                           (3)

The dynamical response is summarised in Figure 5.  These equations allowed us to infer the relative size of the treatment resistant sub-population present in the tumour at treatment initiation  via
                                                          (4)
and thus could be readily inferred from the fit of equation (1) to blood CEA level.  The absence of a treatment resistant sub-clone implies  and thus , whereas the absence of treatment response implies  and thus .
We could follow the change of the relative frequency of mutational variants in the blood of patients under cetuximab treatment.  Certain variants continuously increased during treatment.  For these cases, we did fit an exponential growth function as below: 
                                                         (5)

Estimating relapse time from serial liquid biopsy measurements
Our mathematical framework allows us to estimate the relapse time of patients.  In patients where the change of variants over time in blood are detectable a fit of the exponential function
                                                              (6)
allows us to estimate the growth rate .  Assuming a certain number  of initially resistant cancer cells, the number of resistant cells will grow in time by
                                                 (7)
These resistant cells will translate into a certain tumour volume  that will grow with time and is given by
                                       (8)
In this equation  is the tumour radius and  the average volume of a tumour cell. Assuming that a tumour volume of  contains approximately  cells, this volume is set to be .  Clinical relapse was assumed, when the radius grew to  compared to some initial measured tumour radius . Rearranging terms allows us to solve for the relapse time  that is given by
                                    (9)
To access the full range of possible relapse times we can set , where n might be in the range from 0 to the total number of tumour cells.  If we further assume that the initially measured volume of tumour cells translates into a certain initial number of tumour cells  we can write
                                                (10)
and by setting  as the initial fraction of resistant cancer cells the equation for the relapse time simplifies to
   =                              (11)
Here  can be in the interval of  and 1, which would reveal the total possible range of relapse times.  Additional theory can provide the expected distribution of relapse frequencies  which then translates into a probability distribution for relapse times.
A second possible clinical definition of relapse is the increase of tumour radius by 1.2 compared to the smallest measured radius at initial response.  Adapting this definition also changes the predicted time to relapse .  Now the time to relapse is the sum of the initial time of response to reach the smallest tumour radius  and the subsequent time  to relapse to 1.2 compared to the smallest radius.  Both times can be calculated separately.  The overall tumour response is given by equation (1) in the main text
                                    (12)
The time of initial response to reach the minimal radius  can be calculated by setting
                                               (13)
Solving the equation and rearranging terms gives
                                    (14)
where  corresponds to the initial fraction of the resistant cell population.  The time  to growth back to 1.2 of the minimal radius is given by
                          (15)
Thus the time to relapse is given by
+                      (16)
This equation also allows solving for the initial fraction of resistant cells given the relapse time , which becomes
                                (17)

Statistical Analysis
Response assessment was performed using RECIST v1.1 criteria.  Progression free survival (PFS) was measured from start of treatment to date of progression or death from cancer.  Overall survival (OS) was defined as time from start of treatment to cancer related death.  Patients without an event were censored at last follow up. Patients were divided into two groups including: 1) baseline mutation/amplification, 2) no baseline mutation/amplification.  Chi2 or Fisher’s exact tests were employed to explore whether there was an association between the three variables and Overall Response Rate (ORR), PFS and OS.  Logistic regression was employed to produce odds ratios (ORs) and 95% confidence intervals (CIs).  The PFS and OS rates were estimated using the Kaplan-Meier method and survival curves were generated for each group.  The log-rank test was used to compare the survival curves and a Cox proportional hazards model was fitted to obtain hazard ratios (HRs) and 95% CIs.  The proportional hazards assumption was tested with the use of Schoenfeld residuals. Scientists performing and analysing tissue and liquid biopsy data were blinded to clinical outcomes. Analysis of the first and second cohort was performed in independent laboratories. 


SUPPLEMENTARY FIGURES

Supplementary Figure S1

[image: ]

Supplementary Figure S1. Tissue and blood collection in the PROSPECT-C Trial. Tissue biopsies were not performed (orange) in case the patient died, was deemed unfit or declined biopsy. Tissue analysis was not performed (red) in case of lack of adequate tumour cellularity or poor DNA quality/quantity. 
BL=baseline; PD=progressive disease; PR=partial response
Supplementary Figure S2
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Supplementary Figure S2.  RAS pathway aberrations observed in baseline and disease progression cfDNA of patients enrolled in the first cohort of the PROSPECT-C Trial.  Patients’ cfDNA was tested using digital-droplet PCR. Red boxes indicate mutations present at baseline (BL) and/or progression (PD).
cfDNA= cell-free DNA

Supplementary Figure S3
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Supplementary Figure S3. Heat-map showing results of cfDNA analysis using the Avenio panel in patients with primary resistance in the second cohort of the PROSPECT-C Trial. Baseline (and in one case progression) cfDNA from patients with PFS ≤3 months was tested for a panel of 77 cancer related genes. Red boxes indicate presence of mutations in different genes. Variants were called using the Roche Avenio pipeline. 
PFS=Progression Free Survival; VAF=variant allele frequency; BL=baseline; PD=progressive disease

Supplementary Figure S4
[image: C:\Users\nvaleri\Documents\PROSPECT-C\Revisions 2018\170418\ctDNA quantitation\Used for paper\Supp Fig S5.png]
Supplementary Figure S4.  Baseline cfDNA concentration in patients with or without a mutation in baseline plasmas.  cfDNA was quantitated using TaqMan® RNase P Detection Reagents Kit in the first cohort and using Qubit fluorimeter in the second cohort.  In both sets, no statistically significant difference (p>0.05) in the concentration of cfDNA was observed between patients with or without mutations detected in baseline samples. 
cfDNA= cell-free DNA; PFS=Progression Free Survival

Supplementary Figure S5
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Supplementary Figure S5. Purity adjustment of sub-clonal variants using clonal mutations. We used the frequency of clonal APC driver mutations to adjust the frequency of sub-clonal mutations for purity in each plasma sample in patients with primary (left) and acquired (right) resistance to cetuximab treated in the second cohort of the PROSPECT-C trial. Copy-number states were assumed to be 2/2 (i.e. LOH) for APC mutations (1/3 for case 1044) and 1/2 for all other mutations. 
PFS=Progression Free Survival; CCF=cancer cell fraction; BL=baseline; INT=intermediary; PD=progressive disease


Supplementary Figure S6
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Supplementary Figure S6. Dynamics of sub-clonal mutations detected in ctDNA prior and after cetuximab treatment in a patient enrolled in the PROSPECT-C trial. Patient 1009 progressed on multiple metastatic sites, and his tumour was biopsies at time of disease progression and was also re-biopsied one year later when the patient was enrolled in a different trial (clinical trials.gov number [NCT03010722]). All the metastases continued to grow once anti-EGFR therapy was halted as suggested by the grey bars (RECIST 1.1 criteria) in the figure. Interestingly, the KRAS G12S and the NRAS G12C were already detectable few years before (Supplementary Table S5) before when the patient underwent synchronous resection of the primary sigmoid cancer and two liver metastases (Figure 3C).


 Supplementary Figure S7
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Supplementary Figure S7. Representative image of tissue biopsy collected at partial response in patient 1007 and calculation of tumour percentage by digital pathology. (A-E) H&E of a representative core tissue biopsy collected at time of best response to cetuximab at different magnifications.  Green dotted area marks foci of metastatic CRC surrounded by necrosis and normal tissue.  Tumour percentage was quantitated by NanoZoomer Digital Pathology software.


Supplementary Figure S8 [image: ]
Supplementary Figure S8. Correlation of variant allele frequency between ultra-deep sequencing and digital-droplet PCR in tissue biopsies in the first cohort.


 Supplementary Figure S9
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Supplementary Figure S9. Analysis of ultra-deep sequencing of tissue biopsies. Somatic mutations were called with DeepSNV and reported for hotspots and clonal mutations. Star sign indicates significance (posterior probability < 0.05). VAF=variant allele frequency, A=archival; BL=baseline; PR=partial response; PD=progressive disease 

Supplementary Figure S10
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Supplementary Figure S10. Purity adjustment of sub-clonal variants using clonal APC. Frequency of clonal APC driver mutations was used to adjust the frequency of sub-clonal mutations for purity in each tissue sample. Copy-number states were assumed to be 2/2 (i.e. LOH) for APC mutations and 1/2 for all other mutations. Only VAFs of detected variants (posterior probability < 0.05) are shown.
CCF=cancer cell fraction; A=archival; BL=baseline; PR=partial response; PD=progressive disease 

Supplementary Figure S11
[image: C:\Users\nvaleri\Documents\PROSPECT-C\Revisions 2018\170418\heatmap_tissue_NGS_set2.tif]
Supplementary Figure S11. Tissue Biopsy analysis using a clinically validated assay. Analysis of serial tissue biopsies in patients with RAS pathway cfDNA mutations showed no evidence of clonal RAS pathway mutations in tissues. 
VAF=variant allele frequency; BL=baseline; PR=partial response; PD=progressive disease


Supplementary Figure S12
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Supplementary Figure S12.  Best model fits to the response and relapse dynamics based on CEA levels.  Each panel shows the dynamics of CEA (dots) in the blood of single patients over the course of cetuximab treatment.  For some patients we observe a typical U-shaped dynamics of response followed by relapse. Other patients show progression only.  Best fits (lines) are based on equation (1) in the Method section.  The mathematical model describes the overall dynamics excellent as seen by the overall very high coefficient of determination.  
CEA=Carcinoembryonic antigen
Supplementary Figure S13
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Supplementary Figure S13. Response and relapse rates of patients under cetuximab treatment.  The top and bottom Boxplots show the distribution of response and relapse rate of patients under cetuximab treatment respectively inferred from fits of the mathematical model to CEA time data.  The rates were stratified into groups of responders, stable disease and relapse based on standard clinical criteria.  Stars indicate levels of significance.  Relapse rates were independent of clinical classification, whereas response rates differed significantly between responders, stable disease and relapse.   Pairwise Mann-Whitney U tests were for comparisons.
Supplementary Figure S14
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Supplementary Figure S14. Dynamics of CEA and ctDNA to treatment response.  Each panel shows the dynamics of CEA (grey dots) and ctDNA (green dots) in the blood of single patients for which sufficiently many measures were available over the course of Cetuximab treatment.  Grey lines correspond to best fits of equation (1) and green lines to best fits of equation (5) respectively.  We find that relapse rates inferred from CEA and ctDNA correlate.  It can be shown that relapse based on ctDNA is predictive for the future course of the disease.
CEA=Carcinoembryonic antigen; ctDNA= circulating tumour DNA
Supplementary Figure S15
[image: ../../../../Downloads/Prediciton3.pdf]
Supplementary Figure S15. Distribution of prediction errors as % of clinical relapse time.  For each case, we report the % error of our predictions with respect to the clinical relapse time (baseline to RECIST V 1.1). We note that the current predictions have two limitations that are not dependent on our model: (a) they are tested against RECIST measurements, which are inaccurate estimations of the exact time of relapse because they are manual assessments of CT-scans that are only performed every three months (hence relapse could have happened up to three months before), and (b) the predictions are based on the assumption that the detected mutants in the ctDNA are responsible for the majority of the resistance, if there are other undetected resistant sub-clones, or a component of non-genetic resistance, our model needs such information to perform an accurate prediction.  Despite these limitations, in several cases our predicted waiting time to recurrence was remarkably accurate, especially considering the extensive inter-patient variability in clinical response and the extraordinary underlying complexity of the disease.
CEA=Carcinoembryonic antigen; ctDNA= circulating tumour DNA


Supplementary Figure S16
[image: ../../../../Downloads/CEA_Forecast.pdf]
Supplementary Figure S16. Window of opportunity using CEA vs ctDNA. In the case of CEA measurements alone, assuming weekly measurements, waiting time to relapse can be estimated using the inflection point of the CEA curve, after enough data points have been collected to allow fitting the model. Importantly, our ability to make an early prediction here depends mainly on when it becomes possible to identify the inflection point in the CEA curve.  Figure 4L shows that, for high sensitivity (e.g. 0.01%), ctDNA is better than CEA alone and creates a larger window of opportunity.  For low-sensitivity ctDNA profiling however, not much is gained with respect to CEA because once the clone has grown above the detection threshold and the model fitted, it is already too late.
CEA=Carcinoembryonic antigen; ctDNA= circulating tumour DNA


Supplementary Figure S17
[image: ../../../../Downloads/CEA_Forecast.pdf]
Supplementary Figure S17. Window of opportunity depending on frequency of sampling.  In the case ctDNA profiling with sensitivity of 0.01% (ddPCR), our analysis shows that significant improvements can be obtained by increasing the frequency of ctDNA profiling beyond the four-weeks. Our four-weekly profiling schedule, although unique, still offers limited predictive window.
CEA=Carcinoembryonic antigen; ctDNA= circulating tumour DNA
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