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Supplementary Figure 1. Data mining reveals decoupled regulation of MHC-I and PD-L1.
(A) Analysis of bulk RNA-seq data of different tumor types in TCGA reveals a general positive correlation between MHC-I components and PD-L1 in the majority of cancer types. Pearson correlation coefficients were calculated after correction for immune infiltration levels by IHC (left) or CHAT (right). Cancer types with Pearson correlation coefficient (PCC) of >0.3 are labeled in blue.  (B) The expression of MHC-I and PD-L1 show positive correlation in the majority of cancer types among CCLE lines. (C) The MHC-I/PD-L1 differential expression shows positive correlation with patient survival in the majority of cancer types from TCGA. For each cancer type, we performed a CoxPH regression analysis of patient survival proportional hazard and MHC-I/PD-L1 differential expression. The regression coefficient Wald statistics is plotted for each cancer type. A negative value of Wald statistics indicates that MHC-I/PD-L1 differential expression is negatively correlated with hazard, thus positively correlated with patient survival. (D) Workflow of an integrated approach to identify drugs with immunomodulatory effects.
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Supplementary Figure 2. CRISPR screen identifies novel regulators of MHC-I and PD-L1.
(A) The relative number of sgRNAs retrieved in each sub-population after FACS isolation. Each sub-population corresponds to those in Figure 2A. (B) The candidate positive or negative regulators of PD-L1 identified from the CRISPR screen by MAGeCK. (C) The candidate positive or negative regulators of PD-L1 identified by a different CRISPR screen analysis methods, RIGER. (D) Over-expression of Traf3 led to specific downregulation of MHC-I in the presence of IFNg induction. (E) Relative MFI values of H2-Kb in sgControl or sgTraf3 B16F10 cells, cultured in sgControl- or sgTraf3-conditioned media. (F) Relative MFI values of H2-Kb in GFP+ (WT) or GFP- (sgControl or sgTraf3) B16F10 cells from the co-culture of GFP+ and GFP- cells. (G) Typical FACS plots of B16F10 cells transduced with sgControl or sgTraf3 treated by different concentrations of IFNγ and/or TNFα for 48 hours. The upper panel shows the histograms of H2-Kb and the lower panel shows the histograms of PD-L1 in each condition. (H) Quantification and comparison of MFI values from panel (G). TRAF3 deficiency specifically upregulated H2-Kb.  (I) Typical FACS plots of baseline-level MHC-I and PD-L1 expression in B16F10 and CT26 cells. Cells were incubated with anti-MHC-I (H2-Kb for B16F10 and H2-Kd for CT26), anti-PD-L1, or their corresponding isotype control IgG antibodies and then assayed by FACS. (J) Typical FACS plots of CT26 cells transduced with sgControl or sgTraf3 treated by different concentrations of IFNγ for 48 hours. The upper panel shows the histograms of H2-Kd and the lower panel shows the histograms of PD-L1 in each condition. (K) Quantification and comparison of MFI values from panel (J). TRAF3 deficiency specifically upregulated H2-Kd. (L) Typical FACS plots of CT26 cells transduced with sgControl or sgTraf3 treated by type-I IFN for 48 hours. The upper panel shows the histograms of H2-Kd and the lower panel shows the histograms of PD-L1 in each condition. (M) Quantification and comparison of MFI values from panel (L). TRAF3 deficiency specifically upregulated H2-Kd. (N-Q) Relative MFI of MHC-I and PD-L1 in human cell lines transduced with sgControl or sgTRAF3 and treated by different concentrations of IFNγ for 48 hours. The human cell lines tested include (N) SKMEL5 (melanoma), (O) K028 (melanoma), (P) HT29 (colorectal), and (Q) MCF7 (breast). (*P < 0.05, ***P < 0.001; Two-way ANOVA with Benjamini-Hochberg post test comparing the MFI fold change induced by TRAF3-KO)
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Supplementary Figure 3. TRAF3 negatively regulates the expression of MHC-I through suppression of NF-kB.
(A) RNA-seq of B16F10 cells transduced with sgControl or sgTraf3 shows upregulation of MHC-I-related genes in the absence of Traf3. Volcano plots of differential expression of genes induced by TRAF3 deficiency under vehicle treatment. The X axis shows the log2 fold change of gene expression in B16F10-sgTraf3 cells compared to B16F10-sgControl cells. The Y axis shows the -log10 P value of each gene. Multiple genes in the MHC-I complex, but not Cd274, were upregulated. (B) GSEA enrichment analysis of upregulated pathways (GO biological pathway) in sgTraf3 cells compared to sgControl cells with vehicle treatment. Multiple pathways, such as antigen presentation and NF-kB signaling, were upregulated by the deletion of Traf3. (C) Top candidate genes with upregulated regulatory potential in sgTraf3 compared to sgControl based on ATAC-seq data. (D) Cistrome-GO analysis of the more accessible regions in sgTraf3 compared to sgControl cells with vehicle treatment. (E) Cistrome toolkit analysis of ATAC-seq data revealed that DNA-binding sites of RELA were more open in the Traf3-deficient cells with vehicle treatment. (F) Existing ChIP-seq studies (60–62) showed that RELA and RELB can bind to the promoter/enhancer region of MHC-I in human and mouse cells. (G) Examination of cIAP and NIK levels in sgControl or sgTraf3 cells. We used MG132 treatment to increase the visibility of NIK. (H-I) B16F10 cells transduced with control sgRNA or sgTraf3 were treated with vehicle control, IFNg (1ng/ml), and/or IKK-16 (1μM) for 48 hours, and then assessed on their MHC-I and PD-L1 levels. (H) Typical histogram of H2-Kb and PD-L1 FACS plot of control or Traf3-deficient B16F10 cells in each treatment condition. (I) Quantification of median fluorescence intensity (MFI) of H2-Kb or PD-L1 from (H).
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Supplementary Figure 4. TRAF3-deficient cells show higher sensitivity to T-cell-driven cytotoxicity.
(A) Relative B16F10 cell number after co-culture with Pmel-1 T cells at different E:T ratios revealed a higher sensitivity of Traf3-KO B16F10 cells to T-cell-mediated cytotoxicity. IFNγ pre-treatment was not applied. The bar plots present the relative cell number in each group, normalized to the cell number in the sgControl group in each E:T condition. Mean ± s.d. and individual replicate values are shown for each group. (***P < 0.001; Two-way ANOVA with Benjamini-Hochberg post test comparing sgTraf3 and sgControl in each condition). (B-D) Raw killing percentage of sgControl or sgTraf3 B16F10 cells after co-culture with OT-I (B) or Pmel-1 (C-D) T cells at different E:T ratios. In the co-culture with Pmel-1 T cells, B16F10 cells were pre-treated with (C) or without (D) 1ng/ml IFNγ. The cell numbers are normalized to the E:T = 0 group for each genotype. (E) Relative MFI of H2-Kb in B16F10 cells after co-culture with Pmel-1 T cells at different E:T ratios, without IFNγ pre-treatment. Values are normalized to the sgControl group in E:T = 0 condition. Mean ± s.d. and individual replicate values are shown for each group. (F) Raw killing percentage of control or Traf3-overexpressing B16F10 cells after 3-day co-culture with Pmel-1 T cells at different E:T ratios. (G) Longitudinal tumor size of sgControl or sgTraf3 tumors treated by control IgG, ICB, and/or anti-CD8. Mean ± s.e.m. is shown for each group at each time point. (*P < 0.05, n.s. not significant; Two-way ANOVA with Benjamini-Hochberg post test comparing sgTraf3 and sgControl in each condition). (H) Analysis of published T-cell co-culture or in vivo CRISPR screens revealed a trend for negative selection of sgRNAs targeting Traf3 in the presence of T cells. (I) Analysis of published NK-cell co-culture screen revealed a trend for positive selection of sgRNAs targeting Traf3 in the presence of NK cells.
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Supplementary Figure 5. Workflow of assessing the functional relevance of TRAF3 in clinical cohorts.
(A) Workflow of assessing the functional relevance of TRAF3 in clinical cohorts. We derived a Traf3 knockout signature based on the most differentially expressed genes in the RNA-seq data of sgControl and sgTraf3 B16F10 cells. We then computed the signature score for each clinical sample as the weighted sum of signature gene expression in that sample. This enabled us to evaluate the association between TRAF3 “defectiveness” and multiple clinical parameters, including tumor MHC-I level, cytotoxic T cell infiltration, patient survival, and ICB response.
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Supplementary Figure 6. Association of Traf3-KO signature with clinical features in ICB-naive TCGA patients.
(A-C) Traf3-knockout signature is positively correlated with (A) MHC-I expression, (B) cytotoxic T cell infiltration, and (C) patient survival in the different cancer types in the TCGA datasets. (D) Traf3-knockout signature is positively correlated with MHC-I expression and cytotoxic T cell infiltration and negatively correlated with survival hazard in most cancer types in the TCGA datasets. (E) Cox-PH z statistics of correlation between the complete or MHC-I-restricted Traf3-KO signature and overall survival in TCGA.
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Supplementary Figure 7. Association of Traf3-KO signature with clinical features in ICB-treated patients.
(A) Odds ratio of ICB responder in MHC-I-high versus MHC-I-low patients in each ICB treatment clinical study. (B-D) Traf3-KO signature is positively correlated with (B) MHC-I expression, (C) intratumoral CTL infiltration, and (D) overall survival and/or progression-free survival in patients treated by ICB in different clinical studies. (E) Cox-PH z statistics of correlation between the complete or MHC-I-restricted Traf3-KO signature with survival in patients treated by ICB in different clinical studies.
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Supplementary Figure 8. Birinapant can specifically upregulate MHC-I and add to the efficacy of ICB treatment.
(A) Hierarchical clustering of the correlation of regulation revealed differential regulation of MHC-I complex and PD-L1/PD-L2. (B) Positive correlation between the change in MHC-I expression and the change in Traf3-knockout signature score in response to drug treatment. (C) Birinapant treatment specifically upregulates MHC-I in CT26 cells in the presence of IFNγ. (D-G) Relative MFI of MHC-I and PD-L1 in human cell lines treated by birinapant and/or IFNγ at the indicated concentrations for 48 hours. The human cell lines tested include (D) SKMEL5 (melanoma), (E) K028 (melanoma), (F) HT29 (colorectal), and (G) MCF7 (breast). Mean ± s.d. is shown for each group. Values are normalized to the mean MFI at 0ng/ml IFNγ 0μM birinapant. (***P < 0.001; Two-way ANOVA with Benjamini-Hochberg post test comparing the MFI fold change induced by birinapant treatment) (H) Immunoblot of B16F10 cells treated by IFNγ and/or birinapant. (I) Examination of cIAP and NIK levels by immunoblot following birinapant treatment. We used MG132 treatment to increase the visibility of NIK. (J) Relative Traf3-normal or -deficient B16F10 cell number after co-culture with OT-I T cells at E:T = 1 condition, with vehicle or birinapant treatment. The bar plots present the relative cell number in each group, normalized to the cell number in the sgControl vehicle treatment group. Mean ± s.d. and individual replicate values are shown for each group. The effect of birinapant treatment on sensitivity to T-cell-cytotoxicity depends on TRAF3. (***P < 0.001; Two-way ANOVA with Benjamini-Hochberg post test). (K) Relative MFI of H2-Kb of Traf3-normal or -deficient B16F10 cells after co-culture with OT-I T cells at E:T = 1 condition, with vehicle or birinapant treatment. Values are normalized to the sgControl group in the vehicle treatment condition. Mean ± s.d. and individual replicate values are shown for each group.  (***P < 0.001; Two-way ANOVA with Benjamini-Hochberg post test). (L-M) TIMER predicted higher infiltration of (L) dendritic cells and (M) CD8+ T cells in response to SMAC mimetic treatment.
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