Resolving the spatial and cellular architecture of lung adenocarcinoma by multi-region single-cell sequencing

SUPPLEMENTARY DATA FILE 2

Supplementary Figures S1-S7
Supplementary Fig. S1

- Count matrix
 - Filtering
 - Batch effects evaluation and correction
 - Unsupervised clustering, UMAP visualization & major cell lineages annotation
 - Hierarchical relationship analysis
 - EPCAM- fractions
 - EPCAM+ fractions

- Removal of:
 - Doublets
 - Low quality cells
 - Cells with low complexity libraries/debris

- Subclustering & cell subsets annotation
 - EPCAM- fractions
 - Confirmation of subclustering robustness for specific EPCAM- subsets
 - Differential gene expression analysis of specific subpopulations

- Immune
 - Lymphoid
 - Myeloid
 - Analysis of cell states & signatures

- Cell-Cell communication analysis

- Subclustering & cell subsets annotation
 - EPCAM+ fractions
 - Confirmation of subclustering robustness
 - inferCNV analysis and clustering
 - Single-cell trajectory analysis

- Supplementary Fig. S1
Supplementary Fig. S1. Schematic view of the bioinformatics analysis workflow. An overview of the quality control steps and analyses done.
Supplementary Fig. S2

A

B

C

D

n = 186,916

n = 186,916

Patient

Patient

Batch

% expressed

Patient

Patient

Batch

Scaled exp

Patient

Patient

Batch

LUAD
Adj
Int
Dis
Supplementary Fig. S2. Quality control metrics and expression of major cell lineage markers across the spatial LUAD scRNA-seq dataset. A, Statistical summary of cells passing quality control (QC) and showing cell number (left), fraction of mitochondrial genes (middle), and the number of detected genes (right) per sample. Dis, distant normal; Int, intermediate normal; Adj, adjacent normal; LUAD, tumor tissue. B-C, UMAP plots showing cells colored by patient ID (B) and library/sequencing batch (C). D, Bubble plot showing the percentage of cells expressing lineage markers (indicated by the size of the circle) as well as their scaled expression levels (indicated by the color of the circle) across all cells (related to main Fig. 1D and Fig. 1E).
Supplementary Fig. S3

A) Harmony and rPCA visualizations showing cell type overlap and Jaccard index for different sampling percentages.

B) Cluster overlap matrices for 25%, 50%, and 75% cell sampling, showing the ratio of overlap and Jaccard index for each condition.

C) Cluster overlap table for K-means clustering, showing the ratio of overlap and Jaccard index for different conditions.
Supplementary Fig. S3. Analysis of clustering robustness of major cellular lineages. A, UMAP plots showing cells colored by major lineages and identified with Harmony (left) or rPCA (middle). The right part of panel A shows a heatmap depicting the extent of cluster assignment overlap between rPCA (rows) and Harmony results (columns) as quantified by Jaccard index. B, UMAP plots (top) and the corresponding cluster overlap indices (bottom) when using 25% (left), 50% (middle), and 75% (right) of randomly sampled cells. The heatmaps show cluster overlap indices in randomly sampled results (rows) versus when using all 186,916 cells (columns). C, Heatmap depicting the extent of cluster assignment overlap between k-means clustering (columns) and Harmony (rows) as quantified by Jaccard index.
Supplementary Fig. S4

A

Fraction (Proliferating vs. Non-proliferating)

- **P < 0.001**

B

transcripts (All cells)

- Ep+ (n = 623)
- Ep- (n = 14,509)

P < 0.001

genes (All cells)

- Ep+ (n = 623)
- Ep- (n = 14,509)

C

transcripts (Proliferating cells)

- Ep+ (n = 7)
- Ep- (n = 139)

P < 0.01

genes (Proliferating cells)

- Ep+ (n = 7)
- Ep- (n = 139)

D

transcripts (Non-proliferating cells)

- Ep+ (n = 616)
- Ep- (n = 14,370)

P < 0.001

genes (Non-proliferating cells)

- Ep+ (n = 616)
- Ep- (n = 14,370)

E

Relative expression % of cells expressed

- NK
- B
- T
- Mac
- DC
- EC

Gene Expression
Supplementary Fig. S4. Analysis of expression markers among epithelial and immune cell fractions. **A,** Stacked bar plots showing the relative cell fraction of spatial samples for major lineages considering non-proliferating cells (left) and proliferating ones (middle). Box plot showing fraction of proliferating epithelial cells in LUAD tissues versus normal spatial samples (right). P – value was calculated using Wilcoxon rank sum test. **B,** Boxplots showing the number of detected transcripts (left) and the number of detected genes (right) in epithelial cells versus in all non-epithelial lineages including lymphoid, myeloid, and stromal cells. **C,** Boxplots showing the number of detected transcripts (left) and the number of detected genes (right) in proliferating epithelial cells versus in proliferating cells of non-epithelial lineages including lymphoid, myeloid, and stromal cells. **D,** Boxplots showing the number of detected transcripts (left) and genes (right) in non-proliferating epithelial cells versus in non-proliferating and non-epithelial lineages including lymphoid, myeloid, and stromal cells. **E,** Bubble plot showing the percentage of cells expressing lineage markers (indicated by the size of the circle) as well as their scaled expression levels (indicated by the color of the circle) across selected cell types (related to main Fig. 1G and Fig. 1H). NK; natural killer cell, DC; dendritic cell, EC; endothelial cell.
Supplementary Fig. S5

A

PM1127
n=14,279
SC153
n=623

PM1178
n=5,118
SC172
n=18,761

PM1157_PM1158
n=24,541
SC174
n=6,708

B

P1
P2
P3
P4
P5

C

Cluster overlap
Ratio of overlap: 93.3%

Cluster overlap
Ratio of overlap: 95.8%

Cluster overlap
Ratio of overlap: 97.6%

25% cells sampled

50% cells sampled

75% cells sampled

Cell type (100% cells)

Cell type (random sampling)
Supplementary Fig. S5. Analysis of robustness of epithelial cell clustering. A, UMAP view showing EPCAM+ cells colored by library/sequencing batch. B, UMAP plot showing EPCAM+ cells colored by patient ID. C, UMAP plots (top) showing clustering results when using 25% (top left), 50% (top middle), and 75% (top right) of randomly sampled epithelial cells. The corresponding heatmaps (bottom) show cluster overlap indices in randomly sampled results (rows) versus when using all 70,030 epithelial cells (columns).
Supplementary Fig. S6. Cellular distribution of epithelial lineage clusters.

A, Bar plot showing absolute numbers of cells for each lung epithelial cell lineage. Dis, distant normal; Int, intermediate normal; Adj, adjacent normal; LUAD, tumor tissue; AT1, alveolar type 1; AT2, alveolar type 2.

B, Stacked bar plot showing relative fractions of individual epithelial subclusters derived from each patient.

C, Pie chart showing the fractional distribution of epithelial cells from the LUADs by epithelial lineage cluster.

D, Box plot showing fraction of basal cells among epithelial cells and from LUADs versus other normal spatial samples.

P – value was calculated using Wilcoxon rank sum test.
Supplementary Fig. S7

A

B

C

D

Notch signaling score

Low

High

Alveolar progenitor (C1)

Alveolar progenitor (C3)

Alveolar progenitor (C8)

AT2

AT1

Bronchio-alveolar

Alveolar progenitor (C1)

Alveolar progenitor (C3)

Alveolar progenitor (C8)

AT2

AT1

Bronchio-alveolar

SFTPC

SFTPB

WIF1

HHIP

SFTPD

PGC

AGER

EMP2

CAV1

KRT7

PDPN

HOPX

CTSE

IFI27

CAVIN2

TMSB4X

TM4SF1

HBEGF

MYL9

IGFBP7

SPARC

SCGB3A1

SCGB3A2

SLPI

ALDH1A1

Notch signaling score

scaled exp % cell expressed

-1 0 1

0 20 40 60 80 100

Bronchio-alveolar

AT1

Alveolar progenitor (C3)

Alveolar progenitor (C1)

Alveolar progenitor (C8)

AT2

Alveolar progenitor (C8)

Alveolar progenitor (C1)

Alveolar progenitor (C3)

AT2

AT1

Bronchio-alveolar

Supplementary Fig. S7
Supplementary Fig. S7. Trajectory analysis of alveolar cells. A, Potential developmental trajectory for alveolar cells inferred by pseudotime analysis. Cells were ordered by pseudotime (dotted box) and colored by alveolar cell state. B, Bubble plots showing the percentage (indicated by the size of the circle) of cells expressing markers of alveolar states shown in trajectory analysis from panel C as well as their scaled expression levels (indicated by the color of the circle) C, Pseudotime trajectory showing cells colored by Notch signaling signature score. D, Violin plots showing Notch signaling signature score among alveolar cell states in trajectory analysis from panel B.