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· Supplementary Methods
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· Supplementary Figures S1-S11


Supplementary Methods
Comparison of Microarray Platforms
	As described above, our previous work performed gene expression profiling using both Illumina and Affymetrix microarray platforms (GEO platform IDs GPL13534 and GPL18281 respectively), with Illumina data used for discovery analysis and Affymetrix as a validation set. Our previous publication did not identify clear differences in immune pathways between progressive and regressive lesions based on the Illumina discovery set, yet a similar analysis of the Affymetrix dataset does identify two significant immune-related KEGG pathways(1): cytokine-cytokine interaction (hsa04060) and type I diabetes mellitus (hsa04940). We therefore questioned whether this disparity may be due to platform differences. 
The Affymetrix platform used has many more probes than the Illumina platform, allowing coverage of more genes and coverage of multiple transcripts for some genes. To examine the impact of these differences we performed pathway analysis on the Illumina and Affymetrix datasets separately, then repeated this analysis using only probes that were shared by both platforms and were unambiguous (i.e. had a one-to-one mapping to a given gene on both microarray platforms). Using a Gene Set Enrichment Analysis (GSEA) method, we found two immune-related KEGG pathways to be significant in the Affymetrix dataset but not the Illumina dataset: cytokine-cytokine interaction (hsa04060) and type I diabetes mellitus (hsa04940). Both of these pathways included genes which were not profiled in the Illumina dataset, and indeed when the Affymetrix dataset was reduced to include only shared unambiguous probes hsa04940 was no longer significant and hsa04060 showed a smaller effect size. Chromosomal instability related genes – the most important finding from our previous work – remained significant across all analyses. Some genes which are important to our present analysis are not covered by the Illumina microarray, including TNFSF9, CXCL8 and CD274. We believe these differences justify our decision to focus on the Affymetrix platform, as it offers wider coverage of important immune genes. Pathway analysis results are included in Supplementary Table 5.

Histological Classification
For samples identified by the above process, multiple serial sections were cut and staining with hematoxylin and eosin (H&E) was performed. The H&E slide was used to identify regions of CIS and adjacent stroma; slides were independently reviewed by two pathologists (M.F. and D.M.). In equivocal cases, regions considered “high grade” (CIS or severe dysplasia) were included whereas any region with the appearance of low-grade histology was excluded. H&E slides were used for image analysis; serial sections were used for immunohistochemistry and molecular analyses. 

Image analysis
All slides were scanned using NanoZoomer Digital Pathology System scanner model C9600-01, using NDP.scan version 2.5.89 (Hamamatsu, Japan).

To spatially map single-cells from NSCLC tumour microenvironment using H&E images, an automated deep learning pipeline was used(2). The single-cell neighboring ensemble classifier was trained using 21,009 single-cell annotations by thoracic pathologists from NSCLC samples in the TRACERx100 cohort(3). Four distinct cell types from H&E images were identified: cancer cells, lymphocytes that included leukocytes and plasma cells, stromal cells that included fibroblasts and endothelial cells, and an “other” cell type that included non-identifiable and less abundant cells such as macrophages, chondrocytes, and pneumocytes. As described in (2), a customised implementation of spatially constrained convolution neural networks(4) for TensorFlow was used for the single cell classification and detection tasks. The deep learning pipeline was validated using 5,951 pathological annotations within TRACERx, and to support its generalizability, 5,082 annotations collected externally on an independent cohort, the LATTICe-A study(5). Biological validation of this pipeline against immunohistochemistry data for the identification of cancer, lymphocyte and stromal cells has been previously described(2). 

IHC
2-5m tissue sections were cut and transferred onto poly-l-lysine–coated slides, dewaxed in two changes of xylene and rehydrated in a series of graded alcohols. Details of the primary antibodies used are as follows: 
· SP35: Anti-CD4 Rabbit monoclonal antibody from Abcam Plc, Cambridge, UK.
· SP239: Anti-CD8 Rabbit monoclonal antibody from Abcam Plc, Cambridge, UK.
· 236A/E7: Anti-FOXP3 Mouse antibody, Kind gift from Dr G Roncador, CNIO, Madrid (Spain).
· Anti-4-1BBL (Cat No: ab223160) 
· Anti -CCL27/CTACK (Cat No: MAB376)
· Anti-GPR2/CCR10 (Cat No: ab3904) 
Single immunohistochemistry was carried out using the automated platforms BenchMark Ultra (Ventana/Roche) and the Bond-III Autostainer (Leica Microsystems) according to a protocol described elsewhere(6,7). To establish optimal staining conditions (i.e. antibody dilution and incubation time, antigen retrieval protocols, suitable chromogen) each antibody was tested and optimized on sections of human reactive tonsil, used as positive control.
Multiplex immunohistochemistry was carried out using a protocol described previously(7). Co-expression of nuclear and cytoplasmic or membranous proteins was easy to detect, as the colour of the chromogens remained distinct. Specificity of the staining was assessed by a haematopathologist (TM) with expertise in multiplex-immunostaining. Slides were scanned using the Hamamatsu Nanozoomer digital scanner as described above.
	For T cell subset quantification, a similar deep learning pipeline was used(2). The convolutional neural networks were trained on sample TRACERx IHC CD4/CD8/FOXP3 images using 9,333 single-cell annotations by pathologists and validated against 6 NSCLC independent images using 5,028 annotations. The IHC algorithm classified cells into four classes: CD8+, CD4+, FOXP3+ and “other” cell class (hematoxylin cells). When comparing cell counts between samples, absolute counts were divided by the region area. Regions of CIS and stroma within a slide were quantified separately, with regions annotated manually by the investigators.
	For quantification of novel markers (TNFSF9, CCL27, CCR10), where similar training data was not available, QuPath version 0.2.0(8) was used to segment cells and export per-cell intensity values for cells within annotated CIS regions. A marker-specific minimum intensity threshold was chosen to remove slides with poor staining. For the remaining slides, intensity values were fitted to a model representing a mixture of two normal distributions, representing stain-negative and stain-positive cells. Probabilities of a cell belonging to each group were calculated, and likely staining status assigned. Modelling was performed using the R package mixtools(9).

Quantitative multiplex immunohistochemistry
Multiplex chromogenic immunohistochemistry (IHC) was performed on FFPE section according to a previously published protocol(10,11). Briefly, after deparaffinization, the slides were stained with hematoxylin for 1min (Dako S3301) and tissue sections were scanned using Aperio ImageScope. Then, heat-mediated antigen retrieval (Citrate buffer pH6) was conducted and the endogenous peroxidase activity was blocked (Dako S2003). Sequential IHC consisting of iterative cycles of staining (2 rounds per cycle), scanning and stripping, were performed. Primary antibodies were added in the following order:
 
	
	 
	Cycle 1
	Cycle 2
	Cycle 3
	Cycle 4
	Cycle 5
	Cycle 6
	Cycle 7
	Cycle 8
	Cycle 9

	 
	Hematoxylin
	Round 1
	Round 1
	Round 1
	Round 1
	Round 1
	Round 1
	Round 1
	Round 1
	Round 1

	Primary Ab
	 
	PD1
	HLA DR/DP/DQ
	CD3
	CD8
	GranzymeB
	CD66b
	CD163
	Foxp3
	Ki67

	Supplier
	 
	Abcam
	LS-Bio
	Abcam
	Invitrogen
	Abcam
	StemCell
	Abcam
	Invitrogen
	Abcam

	Clone
	 
	NAT105
	WR18
	CD3-12
	SP16
	Poly
	G10E5
	10D6
	236A/E7
	SP6

	Concentration
	 
	1/50
	1/500
	1/500
	1/100
	1/100
	1/200
	1/100
	1/40
	1/500

	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	 
	 
	Round 2
	Round 2
	Round 2
	Round 2
	Round 2
	Round 2
	 
	Round 2
	Round 2

	Primary Ab
	 
	PDL1
	DC-Lamp
	CD45
	CD20
	CD68
	CD11b
	 
	EOMES
	PanCK

	Supplier
	 
	Cell signaling
	Novus Bio
	BioLegend
	Abcam
	Abcam
	Abcam
	 
	Millipore
	Abcam

	Clone/Product
	 
	E1L3N
	1010E1.01
	H130
	L26
	PG-M1
	EPR1344
	 
	poly
	AE1/AE3

	Concentration
	 
	1/50
	1/100
	1/100
	1/1000
	1/50
	1/1000
	 
	1/1000
	1/2000

	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	 
	 
	Round 3
	 
	 
	 
	 
	 
	 
	 
	Round 3

	 
	 
	Hematoxylin
	 
	 
	 
	 
	 
	 
	 
	Hematoxylin



The secondary HRP-conjugated antibodies anti-mouse and anti-rabbit used were Histofine® Simple StainTM (MAX PO, Nichirei biosciences) and biotinylated anti-rat antibody (BA-4001, Vector laboratories). Peroxidase detection was performed with AEC solution (SK-4200, Vector laboratories). After each round, AEC was removed by ethanol washes and HRP inactivated with Dako S2003. After each cycle the antibodies were stripped with heat-mediated antigen retrieval (Citrate buffer pH6). All the images were processed as per method described previously(10,11). Data analysis was performed on carcinoma and stromal area using FCS Express 7 Image Cytometry software (De Novo Software), based on lineage markers described in Supplementary Table 2.

Neoantigen prediction and LOHHLA
HLA typing was performed using Optitype(12) on germline (blood) WGS data from each patient. This was used as input for netMHCpan 4.0(13,14) for neoantigen prediction; 9-, 10- and 11-mer peptides were considered for each somatic mutation, called using methods described above. To assess for quantitative differences between neoantigens in the progressive and regressive groups, we compared their binding affinities (as calculated by netMHCpan) and their differential agretopicity index (DAI), defined as the difference in binding affinity between mutant and wild-type peptides. Significant differences in these values were not observed between the regressive and progressive groups.
The same HLA typing data was used as input to the LOHHLA tool(15) (Loss of Heterozygosity in Human Leukocyte Antigen), alongside copy number, purity and ploidy data derived from ASCAT. This tool assesses each sample for the presence of LOH in the HLA region – a difficult task due to polymorphism in this region. Output plots from LOHHLA were visually checked prior to calling the presence or absence of HLA LOH in a sample. 

DMR analysis
Methylation data analysis was performed using the Chip Analysis Methylation Pipeline (ChAMP) Bioconductor package with default settings(16). The functions champ.DMP() and champ.DMP() were used to identify differentially methylated probes (DMPs) and differentially methylated regions (DMRs) respectively. Annotation of DMPs and DMRs with affected genes is performed by default within these functions.
A criticism raised against this analysis is the identification of DMRs affecting a highly polymorphic region of chromosome 6. However, we argue that this is a differential analysis between two groups (progressive and regressive), with results replicated in an independent dataset from TCGA (Cancer vs Control data), therefore should not be affected by polymorphism unless the underlying HLA types are significantly different between the two groups. For each identified HLA type, based on 4-digit resolution, we compared the number of patients identified in the progressive and regressive groups using a Fisher’s exact test, and did not find any HLA types to be significant with p < 0.05.

Immune cell quantification from GXN data
To estimate relative immune cell populations from gene expression data we applied the method of Danaher et al.(17) This method was chosen as it has been shown to out-perform similar methods when benchmarked against immunohistochemistry in a large analysis of early-stage invasive lung cancer(18). Briefly, for each of 15 immune cell types, a small set of genes is defined which has been shown to correlate with the presence of that cell type. For each cell type, the mean expression of its associated genes gives a ‘score’ for that cell type. If a gene is not measured by the Affymetrix microarray used, that gene is ignored.
A ‘TIL score’, estimating the overall infiltration of lymphocytes into the tissue, is calculated by taking the mean of 10 individual cell type scores (B-cells, Cytotoxic cells, Exhausted CD8, Macrophages, Neutrophils, NK CD56dim cells, NK cells, T-cells, Th1 cells, CD8 T cells). This process is encoded in the R function do.danaher(), which is available from the Github repository accompanying this paper.
In order to further justify our choice of the Danaher method, we compared the results with two different methods: the Davoli method and CIBERSORT using LM22. As CIBERSORT gives relative data, we adjusted these results using tumour purity estimates from ESTIMATE. We found poor correlation between the three methods, therefore we assessed each against mIHC data as a ‘gold standard’. Due to the very small sample size these data were not performed on the same samples, yet we expected to see similar changes between progressive and progressive groups for any cell type showing a significant signal (p<0.05). Using this comparison, we found Danaher performed well for CD8 cells, but did not correlate well with mIHC data for overall numbers of T-cells, macrophages or Tregs. We therefore remove these cell types from our downstream analyses.

Immune cell quantification from methylation data
	Similar immune quantification from methylation data was performed using methylCIBERSORT(19). Methylation data was first converted to a mixture file using the methylCIBERSORT R package version 0.2.0. A signature file for squamous cell lung cancer was also taken from this package; this signature was derived from TILs in squamous cell lung cancer, a very similar biological question to that of our study. These data were used as input to CIBERSORT(20) to provide relative values for each immune cell subtype included in the signature file.

Correlation of smoking status with outcome
	As described in the main text, we hypothesized that the immunosuppressive effects of active smoking would reduce immune infiltrates and increase risk of progression. We confirmed this result using a Cochrane-Armitage test for trend to identify decreasing infiltrates / increasing progression risk from never to former to current smokers (here defining a sample as ‘infiltrated’ if lymphocytes per unit area quantified from H&E imaging was above the median value). To ensure this result was not driven by multiple samples from a few patients we applied a bootstrapping method to correct for multiple patient samples. We ran 1,000 simulations in which we selected one sample at random from each patient and calculated a Cochrane-Armitage p-value for trend. From these data we present mean p-values in the text, with confidence intervals calculated as 2 standard deviations from the mean.
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Supplementary Tables
Supplementary tables S1-5 are included as Excel files. Legends are presented here.
Table S1. Details of molecular investigations performed on each sample. Clinical and outcome data is also presented. In all cases with a previous history of lung cancer, this was of squamous histology.

Table S2. Markers used to define cell types in quantitative multiplex immunohistochemistry experiments.

Table S3. Immune cell deconvolution from molecular data. Relative proportions of immune cell subtypes are predicted from gene expression data using the Danaher method, and from methylation data using methylCIBERSORT. Differences between progressive and regressive groups are reported here.

Table S4. Gene lists used in this analysis.

Table S5. Pathway analysis comparing the illumina and Affymetrix datasets as described in Supplementary Methods.




Supplementary Figures
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Figure S1. Summary of analyses performed on each CIS sample. Due to technical limitations related to the small size of bronchoscopic biopsies, not all analyses were performed on all samples. Table S1 provides a detailed reference of analyses performed on a per-sample basis. Methodology for sample selection for each analysis modality is provided in methods.
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Figure S2. Proinflammatory cytokines are upregulated in regressive lesions.
Comparing transcriptomic data from progressive CIS lesions (n=10) with regressive (n=8) we find regressive lesions express higher levels of cytokines classically considered to be pro-inflammatory (a) but not anti-inflammatory (b) within the epithelium. The pro:anti-inflammatory ratio is higher in regressive lesions (c). Transcriptomic data from laser-captured stroma adjacent to the same lesions does not show any difference in cytokine expression between progressive and regressive lesions (d-f). Expression values shown are the geometric means of gene expression data for 9 pro-inflammatory and 7 anti-inflammatory cytokines. p-values are calculated using linear mixed effects modelling to account for samples from the same patient.
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Figure S3. Expression of individual cytokines in progressive and regressive CIS lesions.
Continuing the analysis of transcriptomic data from progressive CIS lesions (n=10) with regressive (n=8) shown in Figure S2, we demonstrate the contributions of individual pro-inflammatory cytokines (a) and anti-inflammatory cytokines (b). We see upregulation of several pro-inflammatory cytokines in regressive lesions: IL12A, IL2, IL23A and TNF. CXCL8, which is associated with macrophages, is downregulated in regressive lesions. p-values are calculated using linear mixed effects modelling to account for samples from the same patient.
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Figure S4.  Effects of smoking on progression risk and lymphocyte infiltration.
Smoking status was available for 132 CIS lesions from 59 patients (24 lesions from 13 current smokers; 104 from 43 former smokers; 4 from 3 never smokers). Here we show the absolute (a) and relative (b) numbers of lesions in each group which progressed to cancer. Using a Cochrane-Armitage test to look for a trend from current to former to never smokers, we found a trend towards higher chance of regression (p=0.002). To account for samples from the same patient, we randomly selected one sample per patient and repeated this Cochrane-Armitage test, obtaining a p-value < 0.1 irrespective of sample choice (c). Similarly, we show the absolute (d) and relative (e) numbers of lesions which are “infiltrated”, defined as having above the median number of infiltrating lymphocytes per unit area. Again, we observe a trend towards higher infiltration from current to former to never smokers, which is reasonably robust to sample selection (f). Similar plots dividing the former-smoking group by time since quitting (g-j) do not show a trend towards increased chance of regression or increased lymphocytic infiltration over time.
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Figure S5. Neoantigen analysis of progressive versus regressive lesions.
Predicted neoantigen load correlates closely with mutational burden (a). Therefore, progressive samples, which harbor more mutations, have more neoantigens (b). This remains true when the analysis is limited to clonal neoantigens (c). The proportion of clonal neoantigens was similar (d). Considering the individual predicted neoantigens, there was no qualitative difference between progressive and regressive samples; they were similar in terms of binding affinity (e), rank binding affinity (f) and differential agretopicity index (DAI) (g). The ratio of observed to expected neoantigens (‘depletion score’) was similar between progressive and regressive lesions (h). The p-value for figure (a) was calculated using Pearson’s product moment; p-values for figures (b)-(h) were calculated using a Wilcoxon rank-sum test.
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Figure S6. Aberrant methylation of the HLA region is a feature of progressive CIS and cancer. (a) Differentially methylated regions across the genome, calculated for progressive vs regressive CIS (outer circle) and for cancer vs control (inner circle). Hypermethylated DMRs are plotted in yellow, hypomethylated in blue. Genes involved in the MHC class I mechanism are highlighted. In both comparisons a cluster is observed on chromosome 6, which includes all main HLA regions. (b) Selection of three probes covering the HLA-A gene, all showing marked hypermethylation in a subset of progressive samples and hence suggesting an epigenetic mechanism for reduced HLA-A in these samples. 
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Figure S7. Epigenetic silencing of antigen-presenting genes in squamous cell lung cancers. Correlations of expression and methylation data from TCGA (a) and CIS (b) for key antigen-presentation genes demonstrates clear evidence of epigenetic silencing. Silencing is also seen for other cancer-associated, suggesting that demethylating agents may have wider benefits than improving antigen presentation. However, some key immune genes including immunomodulatory molecule TNFSF9 and MHC II regulator CIITA show a positive correlation with methylation, suggesting that demethylating agents may not be universally beneficial on the immune response. Correlation coefficients shown are calculated using Pearson’s product moment. TNFSF9 is excluded from CIS analysis as it is not profiled by Illumina microarrays; insufficient samples were profiled with both Affymetrix microarrays and methylation arrays.
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Figure S8. Methylation patterns over antigen-presenting genes. Methylation patterns are shown for antigen presentation genes HLA-A, HLA-B, HLA-C, TAP1 and B2M, as well as the immunomodulator TNFSF9. Methylation data is generated from Illumina 450k microarrays, which measure methylation at 450,000 probes across the genome. In each plot, the x-axis shows the genomic location of each probe related to the gene of interest; TSS 200 and TSS1500 represent Transcription Start Site regions. On the y-axis, probe values are shown for each sample, coloured as progressive (red; n=36), regressive (green; n=18) or control (blue; n=33). Loess lines for each sample group are shown, with error bars in grey. We see a pattern of promoter hypermethylation in progressive samples for the majority of these genes, consistent with epigenetic silencing. An exception is TNFSF9 which shows predominantly body hypermethylation; this is consistent with the observation that hypermethylation of TNFSF9 increases expression.
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Figure S9. Comparisons of immune checkpoint molecules between progressive and regressive CIS samples. Here we show gene expression values of immune checkpoint molecules for each individual CIS lesion, showing both progressive (red; n=10) and regressive (blue; n=8). Although only TNFSF9 reaches a significance threshold of FDR < 0.05 on differential expression analysis, other genes show outlier samples in the progressive group. Defects in these genes may be a critical immune escape mechanism in these outlier samples.
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Figure S10. The CCL27:CCR10 axis is upregulated in progressive samples and correlates with PIK3CA/AKT1 expression. 
We compared ligand:receptor expression for each of 52 known cytokine:receptor pairs in 18 CIS lesions (n=10 progressive, 8 regressive). Only CCL27:CCR10 was significantly different between progressive and regressive lesions (FDR 0.003; Figure 4). Progressive samples showed upregulated CCL27 and downregulated CCR10. CCL27 activation of CCR10 has been shown to promote immune escape in mouse models, with the PIK/Akt pathway implicated as a potential mechanism. In CIS data, CCL27 expression correlates with expression of both PIK3CA (a) and AKT1 (b). Correlation coefficients are calculated using Pearson’s product moment.
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Figure S11. Late-progressive lesions are immunologically similar to regressive.
Of 53 lesions that met the clinical endpoint for regression – defined as a subsequent biopsy showing normal epithelium or low-grade dysplasia – 11 developed cancer later at the same site. These are termed ‘late progressive’ lesions. Combined quantitative immunohistochemistry data (n=44; 28 progressive, 16 regressive) with lymphocyte quantification from H&E images (n=112; 68 progressive, 44 regressive) are shown. We observe a similar trend of increased lymphocytes and CD8+ cells in regressive and late progressive samples compared to progressive. We also observe increased stromal lymphocytes in the late progressive group (p=0.037). Quoted p-values are calculated using ANOVA to reject the null hypothesis that all groups are equal, based on a linear mixed model to correct for multiple samples per patient; *p<0.05, #p<0.1. Post-hoc pairwise comparisons using a Tukey HSD test were performed but sample size was insufficient to show significant results.

image6.emf



a



cg09803951 cg05157171 cg23489273



0.0



0.2



0.4



0.6



M
et



hy
la



tio
n 



be
ta



 v
al



ue



Progressive Regressive Control



b










a

cg09803951 cg05157171 cg23489273

0.0

0.2

0.4

0.6

M

e

t

h

y

l

a

t

i

o

n

 

b

e

t

a

 

v

a

l

u

e

Progressive Regressive Control

b


image7.emf



R = − 0.32 , p = 2.5e−10



8



9



10



11



12



13



0.2 0.4 0.6
Methylation beta value



G
en



e 
ex



pr
es



si
on



 (
lo



g 
co



un
ts



)
TCGA HLA−Aa



R = − 0.42 , p < 2.2e−16



9



10



11



12



13



0.1 0.2 0.3
Methylation beta value



G
en



e 
ex



pr
es



si
on



 (
lo



g 
co



un
ts



)



TCGA HLA−B



R = − 0.18 , p = 0.00036



9



10



11



12



13



0.1 0.2 0.3 0.4
Methylation beta value



G
en



e 
ex



pr
es



si
on



 (
lo



g 
co



un
ts



)



TCGA HLA−C



R = − 0.53 , p < 2.2e−16



7



8



9



10



11



0.5 0.6 0.7
Methylation beta value



G
en



e 
ex



pr
es



si
on



 (
lo



g 
co



un
ts



)



TCGA TAP1



R = 0.033 , p = 0.52



6



7



8



9



0.3 0.4 0.5 0.6 0.7
Methylation beta value



G
en



e 
ex



pr
es



si
on



 (
lo



g 
co



un
ts



)



TCGA TAP2



R = − 0.38 , p = 1.1e−14



9



10



11



12



13



0.10 0.15 0.20
Methylation beta value



G
en



e 
ex



pr
es



si
on



 (
lo



g 
co



un
ts



)
TCGA B2M



R = 0.32 , p = 1.7e−10



2



4



6



8



0.2 0.3 0.4 0.5 0.6
Methylation beta value



G
en



e 
ex



pr
es



si
on



 (
lo



g 
co



un
ts



)



TCGA TNFSF9



R = 0.39 , p = 2.5e−15



6



8



10



0.2 0.4 0.6
Methylation beta value



G
en



e 
ex



pr
es



si
on



 (
lo



g 
co



un
ts



)



TCGA CIITA



R = − 0.44 , p = 0.07



8.5



9.0



9.5



0.15 0.20 0.25 0.30
Methylation beta value



G
en



e 
ex



pr
es



si
on



CIS HLA−Ab



R = 0.077 , p = 0.76



9.2



9.4



9.6



0.20 0.24 0.28
Methylation beta value



G
en



e 
ex



pr
es



si
on



CIS HLA−B



R = 0.67 , p = 0.0023



4



5



6



7



0.25 0.30 0.35 0.40 0.45
Methylation beta value



G
en



e 
ex



pr
es



si
on



CIS HLA−C



R = − 0.49 , p = 0.037



8.4



8.8



9.2



9.6



0.60 0.65 0.70 0.75
Methylation beta value



G
en



e 
ex



pr
es



si
on



CIS TAP1



R = − 0.043 , p = 0.87



5.5



6.0



6.5



7.0



0.64 0.66 0.68
Methylation beta value



G
en



e 
ex



pr
es



si
on



CIS TAP2



R = − 0.28 , p = 0.25



7.4



7.6



7.8



8.0



8.2



0.14 0.16 0.18
Methylation beta value



G
en



e 
ex



pr
es



si
on



CIS B2M



R = − 0.4 , p = 0.1



5.5



6.0



6.5



7.0



0.3 0.4 0.5 0.6
Methylation beta value



G
en



e 
ex



pr
es



si
on



CIS CIITA










R

 

=

 -

0.32

 

,

 

p

 

=

 

2.5e−10

8

9

10

11

12

13

0.2 0.4 0.6

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

 

(

l

o

g

 

c

o

u

n

t

s

)

TCGA HLA−A

a

R

 

=

 -

0.42

 

,

 

p

 

<

 

2.2e−16

9

10

11

12

13

0.1 0.2 0.3

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

 

(

l

o

g

 

c

o

u

n

t

s

)

TCGA HLA−B

R

 

=

 -

0.18

 

,

 

p

 

=

 

0.00036

9

10

11

12

13

0.1 0.2 0.3 0.4

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

 

(

l

o

g

 

c

o

u

n

t

s

)

TCGA HLA−C

R

 

=

 -

0.53

 

,

 

p

 

<

 

2.2e−16

7

8

9

10

11

0.5 0.6 0.7

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

 

(

l

o

g

 

c

o

u

n

t

s

)

TCGA TAP1

R

 

=

 

0.033

 

,

 

p

 

=

 

0.52

6

7

8

9

0.3 0.4 0.5 0.6 0.7

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

 

(

l

o

g

 

c

o

u

n

t

s

)

TCGA TAP2

R

 

=

 -

0.38

 

,

 

p

 

=

 

1.1e−14

9

10

11

12

13

0.10 0.15 0.20

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

 

(

l

o

g

 

c

o

u

n

t

s

)

TCGA B2M

R

 

=

 

0.32

 

,

 

p

 

=

 

1.7e−10

2

4

6

8

0.2 0.3 0.4 0.5 0.6

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

 

(

l

o

g

 

c

o

u

n

t

s

)

TCGA TNFSF9

R

 

=

 

0.39

 

,

 

p

 

=

 

2.5e−15

6

8

10

0.2 0.4 0.6

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

 

(

l

o

g

 

c

o

u

n

t

s

)

TCGA CIITA

R

 

=

 -

0.44

 

,

 

p

 

=

 

0.07

8.5

9.0

9.5

0.15 0.20 0.25 0.30

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

CIS HLA−A

b

R

 

=

 

0.077

 

,

 

p

 

=

 

0.76

9.2

9.4

9.6

0.20 0.24 0.28

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

CIS HLA−B

R

 

=

 

0.67

 

,

 

p

 

=

 

0.0023

4

5

6

7

0.25 0.30 0.35 0.40 0.45

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

CIS HLA−C

R

 

=

 -

0.49

 

,

 

p

 

=

 

0.037

8.4

8.8

9.2

9.6

0.60 0.65 0.70 0.75

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

CIS TAP1

R

 

=

 -

0.043

 

,

 

p

 

=

 

0.87

5.5

6.0

6.5

7.0

0.64 0.66 0.68

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

CIS TAP2

R

 

=

 -

0.28

 

,

 

p

 

=

 

0.25

7.4

7.6

7.8

8.0

8.2

0.14 0.16 0.18

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

CIS B2M

R

 

=

 -

0.4

 

,

 

p

 

=

 

0.1

5.5

6.0

6.5

7.0

0.3 0.4 0.5 0.6

Methylation beta value

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

CIS CIITA


image8.emf



BodyTSS1500 TSS200



−0.25



0.00



0.25



0.50



0.75



1.00



29909000 29910000 29911000 29912000 29913000



Position



B
et



a 
va



lu
e



HLA−A



TSS200Body TSS1500



−0.25



0.00



0.25



0.50



0.75



1.00



31322000 31323000 31324000 31325000 31326000



Position
B



et
a 



va
lu



e



HLA−B



TSS1500Body TSS200



−0.25



0.00



0.25



0.50



0.75



1.00



31237000 31238000 31239000 31240000 31241000



Position



B
et



a 
va



lu
e



HLA−C



Body



−0.25



0.00



0.25



0.50



0.75



1.00



32815000 32817500 32820000



Position



B
et



a 
va



lu
e



TAP1



TSS200 BodyTSS1500



−0.25



0.00



0.25



0.50



0.75



1.00



4500300045004000450050004500600045007000



Position



B
et



a 
va



lu
e



B2M



BodyTSS1500



−0.25



0.00



0.25



0.50



0.75



1.00



653000065310006532000653300065340006535000



Position



B
et



a 
va



lu
e



TNFSF9



Control Progressive Regressive










Body TSS1500TSS200

−0.25

0.00

0.25

0.50

0.75

1.00

2990900029910000299110002991200029913000

Position

B

e

t

a

 

v

a

l

u

e

HLA−A

TSS200 Body TSS1500

−0.25

0.00

0.25

0.50

0.75

1.00

31322000 31323000 31324000 31325000 31326000

Position

B

e

t

a

 

v

a

l

u

e

HLA−B

TSS1500 Body TSS200

−0.25

0.00

0.25

0.50

0.75

1.00

31237000 31238000 31239000 31240000 31241000

Position

B

e

t

a

 

v

a

l

u

e

HLA−C

Body

−0.25

0.00

0.25

0.50

0.75

1.00

32815000 32817500 32820000

Position

B

e

t

a

 

v

a

l

u

e

TAP1

TSS200 Body TSS1500

−0.25

0.00

0.25

0.50

0.75

1.00

4500300045004000450050004500600045007000

Position

B

e

t

a

 

v

a

l

u

e

B2M

Body TSS1500

−0.25

0.00

0.25

0.50

0.75

1.00

653000065310006532000653300065340006535000

Position

B

e

t

a

 

v

a

l

u

e

TNFSF9

Control Progressive Regressive


image9.emf



TNFSF4 TNFSF9 VTCN1



PDCD1LG2 TNFRSF14 TNFRSF18 TNFRSF4 TNFRSF9 TNFSF18



HAVCR2 ICOS ICOSLG LAG3 LGALS9 PDCD1



CD40 CD40LG CD70 CD80 CD86 CTLA4



ADORA2A BTLA CD27 CD274 CD276 CD28



1.0



1.5



2.0



2.5



3.0



0.5



1.0



1.5



2.0



4.5



5.0



5.5



6.0



0.25



0.50



0.75



1.00



1.25



4.0



4.5



5.0



5.5



0.50



0.75



1.00



1.25



2.0



2.5



3.0



3.5



4.0



2.0



2.5



3.0



0.6
0.8
1.0
1.2
1.4



1.25



1.50



1.75



2.00



2.25



1.5



2.0



2.5



3.0



2.4



2.8



3.2



1.0



1.5



2.0



2.5



2.1



2.4



2.7



3.0



2.0



2.5



3.0



3.5



2.5



3.0



3.5



4.0



4.5



0.6



0.9



1.2



1.5



1.8



0.4



0.8



1.2



1.6



0.75



1.00



1.25



1.50



0.5



1.0



1.5



2.0



2.0



2.5



3.0



3.5



4.0



4.5



5.0



5.5



4.5



5.0



5.5



1.5



2.0



2.5



3.0



1.6



2.0



2.4



0.5



1.0



1.5



2.0



0.50



0.75



1.00



1.25



G
en



e 
ex



pr
es



si
on



Outcome Progression Regression










TNFSF4 TNFSF9 VTCN1

PDCD1LG2 TNFRSF14 TNFRSF18 TNFRSF4 TNFRSF9 TNFSF18

HAVCR2 ICOS ICOSLG LAG3 LGALS9 PDCD1

CD40 CD40LG CD70 CD80 CD86 CTLA4

ADORA2A BTLA CD27 CD274 CD276 CD28

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

4.5

5.0

5.5

6.0

0.25

0.50

0.75

1.00

1.25

4.0

4.5

5.0

5.5

0.50

0.75

1.00

1.25

2.0

2.5

3.0

3.5

4.0

2.0

2.5

3.0

0.6

0.8

1.0

1.2

1.4

1.25

1.50

1.75

2.00

2.25

1.5

2.0

2.5

3.0

2.4

2.8

3.2

1.0

1.5

2.0

2.5

2.1

2.4

2.7

3.0

2.0

2.5

3.0

3.5

2.5

3.0

3.5

4.0

4.5

0.6

0.9

1.2

1.5

1.8

0.4

0.8

1.2

1.6

0.75

1.00

1.25

1.50

0.5

1.0

1.5

2.0

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

4.5

5.0

5.5

1.5

2.0

2.5

3.0

1.6

2.0

2.4

0.5

1.0

1.5

2.0

0.50

0.75

1.00

1.25

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

Outcome

Progression Regression


image10.emf



R = 0.61 , p = 0.0078



0.5



1.0



1.5



3 4 5



CCL27 expression



P
IK



3C
A



 e
xp



re
ss



io
n



a
R = 0.68 , p = 0.0019



2



3



4



5



6



3 4 5



CCL27 expression



A
K



T
1 



ex
pr



es
si



on



b










R

 

=

 

0.61

 

,

 

p

 

=

 

0.0078

0.5

1.0

1.5

3 4 5

CCL27 expression

P

I

K

3

C

A

 

e

x

p

r

e

s

s

i

o

n

a

R

 

=

 

0.68

 

,

 

p

 

=

 

0.0019

2

3

4

5

6

3 4 5

CCL27 expression

A

K

T

1

 

e

x

p

r

e

s

s

i

o

n

b


image11.emf



Epithelium Stroma



*



0.00



0.25



0.50



0.75



Lymphocytes CD4 CD8 FOXP3 Lymphocytes CD4 CD8 FOXP3



C
el



l c
ou



nt
 p



er
 u



ni
t a



re
a



Outcome



LateProg
Prog.
Reg.










Epithelium Stroma

*

0.00

0.25

0.50

0.75

Lymphocytes CD4 CD8 FOXP3 Lymphocytes CD4 CD8 FOXP3

C

e

l

l

 

c

o

u

n

t

 

p

e

r

 

u

n

i

t

 

a

r

e

a

Outcome

LateProg

Prog.

Reg.


image1.emf



 Pt101−S49
 Pt102−S50
 Pt102−S52
 Pt102−S54



 Pt102−S170
 Pt102−S51
 Pt102−S53



 Pt108−S135
 Pt109−S145
 Pt109−S62



 Pt11−S8
 Pt11−S9



 Pt110−S64
 Pt110−S65
 Pt110−S63



 Pt111−S136
 Pt111−S66



 Pt111−S137
 Pt111−S67
 Pt113−S68
 Pt113−S69
 Pt114−S70



 Pt114−S138
 Pt116−S72
 Pt12−S88
 Pt12−S89
 Pt12−S11
 Pt12−S13
 Pt12−S15
 Pt12−S17
 Pt12−S10
 Pt12−S12
 Pt12−S14
 Pt12−S16
 Pt12−S18



 Pt122−S77
 Pt123−S79
 Pt123−S78



 Pt124−S139
 Pt124−S80
 Pt126−S81
 Pt128−S84
 Pt128−S85
 Pt130−S86



 Pt132−S148
 Pt132−S156
 Pt134−S152
 Pt134−S157
 Pt136−S153
 Pt136−S158
 Pt136−S159
 Pt139−S154
 Pt139−S160
 Pt140−S161
 Pt142−S141
 Pt142−S150
 Pt142−S162



 Pt17−S20
 Pt2−S1



 Pt26−S90
 Pt26−S91
 Pt26−S22
 Pt26−S23
 Pt27−S24



 Pt4−S2
 Pt5−S3



 Pt56−S27
 Pt6−S6



 Pt60−S29
 Pt63−S31
 Pt76−S37
 Pt76−S92
 Pt76−S93
 Pt76−S94
 Pt77−S39
 Pt81−S41
 Pt87−S42



 Pt89−S142
 Pt89−S43
 Pt89−S44
 Pt89−S45



 Pt9−S7
 Pt97−S48



 Pt103−S55
 Pt103−S97



 Pt103−S134
 Pt104−S96



 Pt104−S143
 Pt104−S56
 Pt104−S57
 Pt105−S99
 Pt105−S58
 Pt105−S59
 Pt106−S60



 Pt108−S144
 Pt108−S61



 Pt111−S146
 Pt115−S71
 Pt117−S73
 Pt118−S74
 Pt119−S75
 Pt119−S76



 Pt125−S163
 Pt126−S82
 Pt127−S83



 Pt131−S147
 Pt132−S149
 Pt132−S164
 Pt132−S165
 Pt132−S140
 Pt133−S87



 Pt135−S166
 Pt138−S167
 Pt141−S168
 Pt144−S151
 Pt144−S169



 Pt15−S19
 Pt25−S21
 Pt37−S25
 Pt39−S26
 Pt58−S28



 Pt6−S4
 Pt6−S5



 Pt6−S133
 Pt61−S30
 Pt64−S33
 Pt64−S32
 Pt73−S34
 Pt73−S35
 Pt73−S36
 Pt76−S38
 Pt81−S40
 Pt88−S98
 Pt95−S95
 Pt95−S46
 Pt96−S47



WGS Methylation Gene expression IHC Image analysis



S
am



pl
e



Progression
Regression
NA










 Pt101−S49

 Pt102−S50

 Pt102−S52

 Pt102−S54

 Pt102−S170

 Pt102−S51

 Pt102−S53

 Pt108−S135

 Pt109−S145

 Pt109−S62

 Pt11−S8

 Pt11−S9

 Pt110−S64

 Pt110−S65

 Pt110−S63

 Pt111−S136

 Pt111−S66

 Pt111−S137

 Pt111−S67

 Pt113−S68

 Pt113−S69

 Pt114−S70

 Pt114−S138

 Pt116−S72

 Pt12−S88

 Pt12−S89

 Pt12−S11

 Pt12−S13

 Pt12−S15

 Pt12−S17

 Pt12−S10

 Pt12−S12

 Pt12−S14

 Pt12−S16

 Pt12−S18

 Pt122−S77

 Pt123−S79

 Pt123−S78

 Pt124−S139

 Pt124−S80

 Pt126−S81

 Pt128−S84

 Pt128−S85

 Pt130−S86

 Pt132−S148

 Pt132−S156

 Pt134−S152

 Pt134−S157

 Pt136−S153

 Pt136−S158

 Pt136−S159

 Pt139−S154

 Pt139−S160

 Pt140−S161

 Pt142−S141

 Pt142−S150

 Pt142−S162

 Pt17−S20

 Pt2−S1

 Pt26−S90

 Pt26−S91

 Pt26−S22

 Pt26−S23

 Pt27−S24

 Pt4−S2

 Pt5−S3

 Pt56−S27

 Pt6−S6

 Pt60−S29

 Pt63−S31

 Pt76−S37

 Pt76−S92

 Pt76−S93

 Pt76−S94

 Pt77−S39

 Pt81−S41

 Pt87−S42

 Pt89−S142

 Pt89−S43

 Pt89−S44

 Pt89−S45

 Pt9−S7

 Pt97−S48

 Pt103−S55

 Pt103−S97

 Pt103−S134

 Pt104−S96

 Pt104−S143

 Pt104−S56

 Pt104−S57

 Pt105−S99

 Pt105−S58

 Pt105−S59

 Pt106−S60

 Pt108−S144

 Pt108−S61

 Pt111−S146

 Pt115−S71

 Pt117−S73

 Pt118−S74

 Pt119−S75

 Pt119−S76

 Pt125−S163

 Pt126−S82

 Pt127−S83

 Pt131−S147

 Pt132−S149

 Pt132−S164

 Pt132−S165

 Pt132−S140

 Pt133−S87

 Pt135−S166

 Pt138−S167

 Pt141−S168

 Pt144−S151

 Pt144−S169

 Pt15−S19

 Pt25−S21

 Pt37−S25

 Pt39−S26

 Pt58−S28

 Pt6−S4

 Pt6−S5

 Pt6−S133

 Pt61−S30

 Pt64−S33

 Pt64−S32

 Pt73−S34

 Pt73−S35

 Pt73−S36

 Pt76−S38

 Pt81−S40

 Pt88−S98

 Pt95−S95

 Pt95−S46

 Pt96−S47

WGS Methylation Gene expression IHC Image analysis

S

a

m

p

l

e

Progression

Regression

NA


image2.emf



p=0.00037



1.1



1.3



1.5



1.7



Prog. Reg.



P
ro



−
in



fla
m



m
at



or
y 



cy
to



ki
ne



s 
(e



pi
th



el
iu



m
)



a p=0.32



1.2



1.4



1.6



1.8



2.0



Prog. Reg.



A
nt



i−
in



fla
m



m
at



or
y 



cy
to



ki
ne



s 
(e



pi
th



el
iu



m
)



b p=0.011



0.8



1.0



1.2



Prog. Reg.



P
ro



:A
nt



i r
at



io
 (



ep
ith



el
iu



m
)



c



p=0.69



0.9



1.0



1.1



1.2



1.3



1.4



1.5



Prog. Reg.



P
ro



−
in



fla
m



m
at



or
y 



cy
to



ki
ne



s 
(s



tr
om



a)



d p=0.19



1.2



1.4



1.6



Prog. Reg.



A
nt



i−
in



fla
m



m
at



or
y 



cy
to



ki
ne



s 
(s



tr
om



a)



e p=0.51



0.8



1.0



1.2



Prog. Reg.



P
ro



:A
nt



i r
at



io
 (



st
ro



m
a)



f










p=0.00037

1.1

1.3

1.5

1.7

Prog. Reg.

P

r

o

−

i

n

f

l

a

m

m

a

t

o

r

y

 

c

y

t

o

k

i

n

e

s

 

(

e

p

i

t

h

e

l

i

u

m

)

a

p=0.32

1.2

1.4

1.6

1.8

2.0

Prog. Reg.

A

n

t

i

−

i

n

f

l

a

m

m

a

t

o

r

y

 

c

y

t

o

k

i

n

e

s

 

(

e

p

i

t

h

e

l

i

u

m

)

b

p=0.011

0.8

1.0

1.2

Prog. Reg.

P

r

o

:

A

n

t

i

 

r

a

t

i

o

 

(

e

p

i

t

h

e

l

i

u

m

)

c

p=0.69

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Prog. Reg.

P

r

o

−

i

n

f

l

a

m

m

a

t

o

r

y

 

c

y

t

o

k

i

n

e

s

 

(

s

t

r

o

m

a

)

d

p=0.19

1.2

1.4

1.6

Prog. Reg.

A

n

t

i

−

i

n

f

l

a

m

m

a

t

o

r

y

 

c

y

t

o

k

i

n

e

s

 

(

s

t

r

o

m

a

)

e

p=0.51

0.8

1.0

1.2

Prog. Reg.

P

r

o

:

A

n

t

i

 

r

a

t

i

o

 

(

s

t

r

o

m

a

)

f


image3.emf



FDR=0.13



0.5



1.0



Prog. Reg.



IF
N



G
FDR=0.00051



3



4



5



Prog. Reg.



T
N



F



FDR=0.23



0.4



0.8



1.2



1.6



Prog. Reg.



IL
1B



FDR=0.0081



0.00



0.25



0.50



0.75



1.00



1.25



Prog. Reg.



IL
2



FDR=1



0.2



0.4



0.6



0.8



1.0



Prog. Reg.



IL
7



FDR=0.0063



1



2



3



4



5



Prog. Reg.



C
X



C
L8



FDR=0.00078



3



4



5



Prog. Reg.



IL
12



A



FDR=1



1.0



1.5



2.0



2.5



3.0



Prog. Reg.



IL
17



A



FDR=0.011



1.5



2.0



2.5



3.0



Prog. Reg.



IL
23



A



a
FDR=0.96



3.2



3.6



4.0



4.4



Prog. Reg.



T
G



F
B



1



FDR=0.096



0.8



1.2



1.6



2.0



Prog. Reg.



IL
10



FDR=1



0.75



1.00



1.25



1.50



Prog. Reg.



IL
1R



A
P



FDR=1



0



1



2



3



Prog. Reg.



IL
4



FDR=1



1



2



Prog. Reg.



IL
6



FDR=1



3.5



4.0



4.5



Prog. Reg.



IL
11



FDR=1



0.8



1.2



1.6



2.0



2.4



Prog. Reg.



IL
13



b










FDR=0.13

0.5

1.0

Prog. Reg.

I

F

N

G

FDR=0.00051

3

4

5

Prog. Reg.

T

N

F

FDR=0.23

0.4

0.8

1.2

1.6

Prog. Reg.

I

L

1

B

FDR=0.0081

0.00

0.25

0.50

0.75

1.00

1.25

Prog. Reg.

I

L

2

FDR=1

0.2

0.4

0.6

0.8

1.0

Prog. Reg.

I

L

7

FDR=0.0063

1

2

3

4

5

Prog. Reg.

C

X

C

L

8

FDR=0.00078

3

4

5

Prog. Reg.

I

L

1

2

A

FDR=1

1.0

1.5

2.0

2.5

3.0

Prog. Reg.

I

L

1

7

A

FDR=0.011

1.5

2.0

2.5

3.0

Prog. Reg.

I

L

2

3

A

a

FDR=0.96

3.2

3.6

4.0

4.4

Prog. Reg.

T

G

F

B

1

FDR=0.096

0.8

1.2

1.6

2.0

Prog. Reg.

I

L

1

0

FDR=1

0.75

1.00

1.25

1.50

Prog. Reg.

I

L

1

R

A

P

FDR=1

0

1

2

3

Prog. Reg.

I

L

4

FDR=1

1

2

Prog. Reg.

I

L

6

FDR=1

3.5

4.0

4.5

Prog. Reg.

I

L

1

1

FDR=1

0.8

1.2

1.6

2.0

2.4

Prog. Reg.

I

L

1

3

b


image4.emf



0



25



50



75



100



Current Former Never



co
un



t
a



0.00



0.25



0.50



0.75



1.00



Current Former Never



pr
op



or
tio



nb



0



10



20



30



40



50



0.050 0.075 0.100
p−value for outcome



de
ns



ity



c



0



20



40



60



80



Current Former Never



co
un



t



d



0.00



0.25



0.50



0.75



1.00



Current Former Never



pr
op



or
tio



ne



0



2



4



6



8



0.0 0.1 0.2 0.3 0.4 0.5
p−value for infiltration



de
ns



ity



f



0



10



20



30



Current <1 1−5 5−10 >10 Never Unknown



co
un



t



g



0.00



0.25



0.50



0.75



1.00



Current <1 1−5 5−10 >10 Never Unknown



pr
op



or
tio



nh



0
5



10
15
20
25



Current <1 1−5 5−10 >10 Never Unknown



co
un



t



i



0.00



0.25



0.50



0.75



1.00



Current <1 1−5 5−10 >10 Never Unknown



pr
op



or
tio



nj



Outcome Progression Regression Infiltrated FALSE TRUE










0

25

50

75

100

Current Former Never

c

o

u

n

t

a

0.00

0.25

0.50

0.75

1.00

Current Former Never

p

r

o

p

o

r

t

i

o

n

b

0

10

20

30

40

50

0.050 0.075 0.100

p−value for outcome

d

e

n

s

i

t

y

c

0

20

40

60

80

Current Former Never

c

o

u

n

t

d

0.00

0.25

0.50

0.75

1.00

Current Former Never

p

r

o

p

o

r

t

i

o

n

e

0

2

4

6

8

0.0 0.1 0.2 0.3 0.4 0.5

p−value for infiltration

d

e

n

s

i

t

y

f

0

10

20

30

Current <1 1−5 5−10 >10 Never Unknown

c

o

u

n

t

g

0.00

0.25

0.50

0.75

1.00

Current <1 1−5 5−10 >10 Never Unknown

p

r

o

p

o

r

t

i

o

n

h

0

5

10

15

20

25

Current <1 1−5 5−10 >10 Never Unknown

c

o

u

n

t

i

0.00

0.25

0.50

0.75

1.00

Current <1 1−5 5−10 >10 Never Unknown

p

r

o

p

o

r

t

i

o

n

j

Outcome

Progression Regression

Infiltrated

FALSE TRUE


image5.emf
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